首页> 中文期刊> 《材料科学技术:英文版》 >Graphitic carbon nitride/antimonene van der Waals heterostructure with enhanced photocatalytic CO_(2) reduction activity

Graphitic carbon nitride/antimonene van der Waals heterostructure with enhanced photocatalytic CO_(2) reduction activity

         

摘要

Photocatalytic reduction of CO_(2) into valuable fuels is one of the potential strategies to solve the carbon cycle and energy crisis.Graphitic carbon nitride(g-C_(3)N_(4)),as a typical two-dimensional(2D)semiconductor with a bandgap of∼2.7 eV,has attracted wide attention in photocatalytic CO_(2) reduction.However,the performance of g-C_(3)N_(4) is greatly limited by the rapid recombination of photogenerated charge carriers and weak CO_(2) activation capacity.Construction of van der Waals heterostructure with the maximum interface contact area can improve the transfer/seperation efficiency of interface charge carriers.Ultrathin metal antimony(Sb)nanosheet(antimonene)with high carrier mobility and 2D layered structure,is a good candidate material to construct 2D/2D Sb/g-C_(3)N_(4) van der Waals heterostructure.In this work,the density functional theory(DFT)calculations indicated that antimonene has higher carrier mobility than g-C_(3)N_(4) nanosheets.Obvious charge transfer and in-plane structure distortion will occur at the interface of Sb/g-C_(3)N_(4),which endow stronger CO_(2) activation ability on di-coordinated N active site.The ultrathin g-C_(3)N_(4) and antimonene nanosheets were prepared by ultrasonic exfoliation method,and Sb/g-C_(3)N_(4) van der Waals heterostructures were constructed by self-assembly process.The photoluminescence(PL)and time-resolved photoluminescence(TRPL)indicated that the Sb/g-C_(3)N_(4) van der Waals heterostructures have a better photogenerated charge separation efficiency than pure g-C_(3)N_(4) nanosheets.In-situ FTIR spectroscopy demonstrated a stronger ability of CO_(2) activation to^ (∗)COOH on Sb/g-C_(3)N_(4) van der Waals heterostructure.As a result,the Sb/g-C_(3)N_(4) van der Waals heterostructures showed a higher CO yield with 2.03 umol g^(−1) h^(−1),which is 3.2 times that of pure g-C_(3)N_(4).This work provides a reference for activating CO_(2) and promoting CO_(2) reduction by van der Waals heterostructure.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号