首页> 中文期刊> 《材料科学技术:英文版》 >Beneficial effects of deep cryogenic treatment on mechanical properties of additively manufactured high entropy alloy:cyclic vs single cryogenic cooling

Beneficial effects of deep cryogenic treatment on mechanical properties of additively manufactured high entropy alloy:cyclic vs single cryogenic cooling

         

摘要

Additively manufactured(AM)metallic materials commonly possess substantial tensile surface residual stress,which is detrimental to the load-bearing service behavior.Recently,we demonstrated that deep cryogenic treatment(DCT)is an effective method for improving the tensile properties of CoCrFeMnNi high-entropy alloy(HEA)samples fabricated by laser melting deposition(LMD),by introducing high compressive residual stress and deformation microstructures without destroying the AM shape.However,carrying out the DCT in a single-step mode does not improve the residual stress gradients inherent from the LMD process,which are undesirable as the mechanical properties will not be homogeneous within the sample.In this work,we show that carrying out the DCT in a cyclic mode with repeated cryogenic cooling and reheating can significantly homogenize the residual stress in LMD-fabricated Co Cr Fe Mn Ni HEA,and improve tensile strength and ductility,compared with single-step DCT of the same cryogenic soaking duration.Under cyclic DCT,the thermal stress is re-elevated to a high value at each cryogenic cooling step,leading to the formation of denser and more intersecting reinforcing crystalline defects and hcp phase transformation,compared to single-step DCT of the same total cryogenic soaking duration in which the thermal stress relaxes towards a low value over time.The enhancement of defect formation in the cyclic mode of DCT also leads to more uniform residual stress distribution in the sample after the DCT.The results here provide important insights on optimizing DCT processes for post-fabrication improvement of mechanical properties of AM metallic net shapes.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号