首页> 中文期刊> 《材料科学技术:英文版》 >Enhanced strength-ductility of CoCrFeMnNi high-entropy alloy with inverse gradient-grained structure prepared by laser surface heat-treatment technique

Enhanced strength-ductility of CoCrFeMnNi high-entropy alloy with inverse gradient-grained structure prepared by laser surface heat-treatment technique

         

摘要

The inverse gradient-grained CoCrFeMnNi high-entropy alloy with a desirable mechanical property that evades the strength-ductility trade-off is fabricated by the process of cold rolling and subsequent laser surface heat-treatment.Due to the gradually decayed thermal effect along with the thickness,the grain size increases from the hard core to the soft surface in terms of the inverse gradient-grained sample,which is in good consistent with the microhardness profiles.The hetero-deformation induced strengthening and strain hardening caused by the inverse gradient-grained structure improve the strength-ductility combination,as well as the high-order hierarchal nanotwins due to the enhanced interaction with dislocations.For the laser surface heat-treatment technique,the strength and ductility are significantly increased by enlarging the microhardness difference and decreasing the thermal stress.Considering the high volume fraction of gradient-grained layer and a great deal of high-order hierarchal nanotwins in the central region,the laser surface heat-treatment technique is a promising way to produce the gradientstructured materials without thickness limitation.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号