首页> 中文期刊> 《材料科学技术:英文版》 >Stabilizing a severely deformed Al-7Mg alloy with a multimodal grain structure via Mg solute segregation

Stabilizing a severely deformed Al-7Mg alloy with a multimodal grain structure via Mg solute segregation

         

摘要

Single-phase Al-Mg alloys processed by severe plastic deformation(SPD)usually suffer from unsatisfactory thermal stability at moderate to high temperatures with recrystallization occurring and obvious grain coarsening.In the present work,an Al-7Mg alloy prepared by equal-channel angular pressing(ECAP)possessed markedly enhanced thermal stability upon annealing at moderate to high temperatures(200-275℃),compared with those ultrafine-grained dilute Al-Mg alloys with a uniform microstructure.The enhanced thermal stability is due primarily to the multimodal grain structure consisting of nano-,ultrafine-and micron-sized grains,strong segregation and/or clusters of Mg solute along grain boundaries(GBs),and Al_(3)Mg_(2)precipitates formed during annealing.First,extensive recovery predominates over recrystallization and consumes most of the stored energy in the ECAPed Al-7Mg alloy annealed at≤275℃,leading to the recrystallization and growth of nano/ultrafine grains being retarded or postponed.Moreover,Mg solute segregation and/or clusters along GBs of nano/ultrafine grains could further suppress grain growth via diminishing GB energy and dragging GBs efficiently.In addition,Al_(3)Mg_(2)precipitates formed with increasing annealing time could inhibit grain growth by pinning GBs.The present multimodal-grained Al-7Mg alloy with enhanced thermal stability is believed to be particularly attractive in potential engineering applications at moderate to high temperatures.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号