首页> 中文期刊> 《材料科学技术:英文版》 >Microstructural evolution and precipitation behavior of Al-7Si-3Cu alloy prepared under 5 GPa

Microstructural evolution and precipitation behavior of Al-7Si-3Cu alloy prepared under 5 GPa

         

摘要

This paper presents a systematic investigation of the microstructural evolution and mechanical proper-ties of Al-7Si-3Cu alloys prepared under high pressure of 5 GPa.It is found that the dendritic structure disappears due to the enhanced stability of the growth interface under high pressure.Meanwhile,a con-siderable solute-induced modification effect is achieved in the eutectic Si.Besides,unconventional larger eutectic colonies and ultrafine nanocrystalline eutectics are observed within the intragranular area.Com-bined with detailed microstructural characterization,the crucial role of high pressure on the evolution of these isolated phases is discussed.The study also explores the precipitation behavior and strengthening mechanisms of alloys prepared under direct aging and solution-aging treatments.Upon the direct aging treatment,θ’phases,coarse Al 2 Cu particles,and Si particles form simultaneously in the matrix owing to the increased solid solubility of alloying elements,which results in the highest mechanical properties with a microhardness of 132.8 HV and compressive stress of 715 MPa.Solution-aging treatment leads to the segregation of Si onθ’phases,which proved to be energetically favorable according to first-principles calculations.This work provides new insights into the microstructural optimization of aluminum-silicon-based alloys through high-pressure manipulation and paves the way for further industrial applications.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号