首页> 中文期刊> 《材料科学技术:英文版》 >Formability of AA 2219-O sheet under quasi-static,electromagnetic dynamic,and mechanical dynamic tensile loadings

Formability of AA 2219-O sheet under quasi-static,electromagnetic dynamic,and mechanical dynamic tensile loadings

         

摘要

The mechanism by which electromagnetic forming(EMF)enhances the formability of metals is unclear owing to the coupling effect of multi-physics fields.In the present work,the associated formability improvement mechanisms were qualitatively categorized and illustrated.This was realized by comparing the formability of fully annealed 2219 aluminum alloy(AA 2219-O)sheet under quasi-static(QS),electromagnetic dynamic(EM),and mechanical dynamic(MD)tensile loadings.It was found that the forming limit of AA 2219-O sheet under EM tensile loading was significantly(45.4%)higher than that under QS tensile loading,and was marginally(3.7%–4.3%)higher than that under MD tensile loading.In addition,the forming limit of AA 2219-O sheet demonstrated a negative dependency on the strain rate within the range of the dynamic tensile tests conducted.The deformation conditions common to EM and MD tensile loadings were responsible for the significant formability improvement compared with QS tensile loading.In particular,the inertial effect was dominant.The different deformation conditions that distinguish EM tensile loading from MD tensile loading resulted in the marginal improvement in formability.This was caused by the absence of a sustaining contact force at the later deformation stage and the lower strain rate.The body force exerted little influence on the formability improvement,and the thermal effect under the two dynamic tensile loadings was negligible.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号