首页> 中文期刊> 《材料科学技术:英文版 》 >A new strengthening mechanism driven by disruptive shear and solute segregation during warm rolling in 1.4 GPa class 12.5 wt Al added-FeMnC ultra-lightweight steel

A new strengthening mechanism driven by disruptive shear and solute segregation during warm rolling in 1.4 GPa class 12.5 wt Al added-FeMnC ultra-lightweight steel

         

摘要

Novel strengthening of Fe-29.1Mn-12.5Al-1.35C-4.95Cr steel achieved by warm rolling was investi-gated.The solution-treated steel consisted of aγ-matrix containing nano-sizedκ-carbide((Fe,Mn)_(3) AlC)and elongated prior ferrite,which was transformed into FeAl-type B2 and Fe_(3) Al-type D0_(3) phases.The solution-treated steel exhibited poor strain hardening owing to glide softening associated withκ-carbide shearing by dislocations.However,after warm rolling with a reduction ratio of 30%at 300℃,the yield and tensile strengths significantly increased from 917 to 1300 MPa and 1025 to 1419 MPa,respectively.The tensile test conducted at 300℃to simulate warm rolling exhibited serrated flows,indicating dy-namic strain aging(DSA).Atom probe tomography exhibited that the C atoms inκ-carbide were swept away along the slip direction by disruptive shear during rolling at 300℃.The swept C atoms along the slip direction interacted strongly with dislocations at 300℃,with repeated pinning and breakaway of dislocations from the C atoms.This contributed to significant strengthening owing to the formation of a solute-rich atmosphere after warm rolling.The results of the tensile tests at 300℃indicated that the de-gree of strengthening was proportional to the pre-strain level.Tensile strength of 1.4 GPa can be achieved with good ductility(17%elongation)by warm rolling.This novel warm-rolling strengthening method ex-pedites the potential application of Fe-29.1Mn-12.5Al-1.35C-4.95Cr as a 1.4 GPa class ultra-lightweight steel.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号