首页> 中文期刊> 《材料科学技术:英文版》 >Unveiling the role of metallic CoP@Ni_(2)P sea-urchin-like nanojunction as a photothermal cocatalyst for enhancing the H_(2) generation and benzaldehyde formation over CdZnS nanoparticles

Unveiling the role of metallic CoP@Ni_(2)P sea-urchin-like nanojunction as a photothermal cocatalyst for enhancing the H_(2) generation and benzaldehyde formation over CdZnS nanoparticles

         

摘要

Aiming to develop a photocatalyst that can simultaneously produce valuable chemicals and clean H_(2) fuel for promoting the utilization efficiency of solar energy,herein,a sea-urchin-like CoP@Ni_(2)P binary nanojunction was employed as an efficient photothermal cocatalyst to couple with zero-dimensional CdZnS(CZS)solid solution for achieving superior coordinative redox reaction.The CoP@Ni_(2)P/CZS hybrid displayed a high solar-driven H_(2) generation rate of 40.92 mmol g^(–1) h^(–1) coupling with a benzaldehyde formation rate of 20.33 mmol g^(–1) h^(–1),which was 16.4 and 8.0 times higher than that of bare CZS.Furthermore,the CoP@Ni_(2)P/CZS hybrid also achieved a high photothermal H_(2) production under a broad light range from 420 to 720 nm,and the H_(2) production reached 44.48μmol g^(–1) h^(–1) under the 720 nm light illumination.The enhanced catalytic performance can be ascribed to that the CoP@Ni_(2)P nanojunction with photothermal effect can speed up the separation and transport of carriers,offer more catalytic active sites,and induce an increase in temperature to optimize reaction kinetics.This study may open a facile route to design novel binary metal phosphides with dual functions in photocatalysis for the full exploitation of solar energy.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号