首页> 中文期刊> 《材料科学技术:英文版》 >Microstructural evolution of a Ni-Co based superalloy during hot compression atγ'sub-/super-solvus temperatures

Microstructural evolution of a Ni-Co based superalloy during hot compression atγ'sub-/super-solvus temperatures

         

摘要

The effects of strain rate on the microstructural evolution and deformation mechanism of a Ni-Co based superalloy were investigated by isothermal compression tests performed atγ'sub-solvus(1090℃)andγ'super-solvus temperatures(1150℃)with a wide strain rate range from 0.001 to 10 s^(-1)under a true strain of 0.693.Electron backscatter diffraction(EBSD),electron channeling contrast imaging(ECCI)and transmission electron microscope(TEM)techniques were used to characterize the microstructures.The results revealed that the dynamic recrystallization(DRX)volume fraction increased and stored energy of theγ'matrix grains decreased with increasing the strain rate duringγ'sub-solvus temperature deformation,while the opposite phenomena were observed duringγ'super-solvus temperature deformation.The comprehensive effect of initial grain size,primaryγ'phase,twins and adiabatic temperature rise led to these results.The primaryγ'particles undergone the deformation behavior within itself and obviously accelerated the DRX of the matrix.The microstructural evolution proved that discontinuous dynamic recrystallization(DDRX)was the dominant mechanism during the hot deformation carried out at bothγ'sub-solvus andγ'super-solvus temperatures.Primaryγ'particles obviously accelerated the nucleation step and retarded the growth step of DDRX duringγ'sub-solvus temperature deformation.Besides,the acceleration effect of primaryγ'particles on DDRX increased with the increase of strain rate.Continuous dynamic recrystallization(CDRX)was confirmed to be an assistant mechanism duringγ'super-solvus temperature deformation and was promoted with the increase of strain rate.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号