首页> 中文期刊> 《镁合金学报(英文)》 >A rolled Mg-8Al-0.5Zn-0.8Ce alloy with high strength-ductility synergy via engineering high-density low angle boundaries

A rolled Mg-8Al-0.5Zn-0.8Ce alloy with high strength-ductility synergy via engineering high-density low angle boundaries

             

摘要

Developing low-cost rolled Mg alloys with both high strength and ductility is desirable,while the improved strength is generally accompanied with decreased ductility.Here,by using rotated hard-plate rolling(RHPR)with a total thickness reduction of~85%,we obtained a Mg-8Al-0.5Zn-0.8Ce(wt.%,AZ80-0.8Ce)alloy with a high strength-ductility synergy,i.e.,the yield strength(YS),ultimate tensile strength(UTS)and elongation-to-failure(EF)are~308 MPa,~360 MPa and~13.8%,respectively.It reveals that the high YS is mainly originated from grain boundary strengthening(~212 MPa),followed by dislocation strengthening(~43 MPa)and precipitation hardening(~25 MPa).It is found that a relatively homogeneous fine grain structure containing a large fraction(~62%)of low angle boundaries(LABs)is achieved in the RHPRed alloy,which is benefit for the high tensile EF value.It demonstrates that LABs have important contributions to strengthening and homogenizing tensile deformation process,leading to the simultaneous high strength and high EF.Our work provides a new insight for fabrication of low-cost high performance Mg alloys with an excellent strength-ductility synergy.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号