首页> 中文期刊> 《防务技术:英文版》 >Natural convection effects on TNT solidification inside a shaped charge mold

Natural convection effects on TNT solidification inside a shaped charge mold

         

摘要

High Explosive Anti-Tank(HEAT) warheads and ammunitions are frequently produced by explosive casting inside an axis-symmetric mold with an inverted conical geometry in the basis. In order to prevent manufacturing defects, the solidification process must be controlled. In this study, a dimensionless solidification model has been proposed to investigate the heat transfer considering the natural convection inside the liquid explosive and the numerical simulations were performed by using COMSOL Multiphysics and Modeling Software, employing trinitrotoluene(TNT) thermophysical properties. The effect of three different boundary conditions on the top of the mold have been evaluated: convection, adiabatic and isothermal. It has been observed that solidification process was faster for convection case and slower for isothermal case, while an intermediary total solidification time value was found for adiabatic case.Moreover, liquid explosive was completely surrounded by solid explosive during the solidification process for convection case and also for adiabatic case through the end of the process. Otherwise, it was not observed for isothermal case. The natural convection effects promoted a vortex inside the liquid explosive, accelerating the heat transfer process. It has been concluded that isothermal mold top boundary condition should be preferred to prevent manufacturing defects, avoiding high thermal stress.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号