首页> 中文期刊> 《中国科学》 >Prediction of the lowest energy configuration for Lennard-Jones clusters

Prediction of the lowest energy configuration for Lennard-Jones clusters

         

摘要

Based on the work of previous researchers, a new unbiased optimization algorithm—the dynamic lattice searching method with two-phase local search and interior operation (DLS-TPIO)—is proposed in this paper. This algorithm is applied to the optimization of Lennard-Jones (LJ) clusters with N=2–650, 660, and 665–680. For each case, the putative global minimum reported in the Cambridge Cluster Database (CCD) is successfully found. Furthermore, for LJ533 and LJ536, the potential energies obtained in this study are superior to the previous best results. In DLS-TPIO, a combination of the interior operation, two-phase local search method and dynamic lattice searching method is adopted. At the initial stage of the optimization, the interior operation reduces the energy of the cluster, and gradually makes the configuration ordered by moving some surface atoms with high potential energy to the interior of the cluster. Meanwhile, the two-phase local search method guides the search to the more promising region of the configuration space. In this way the success rate of the algorithm is significantly increased. At the final stage of the optimization, in order to decrease energy of the cluster further, the positions of surface atoms are further optimized by using the dynamic lattice searching method. In addition, a simple new method to identify the central atom of icosahedral configurations is also presented. DLS-TPIO has higher computing speed and success rates than some well-known unbiased optimization methods in the literature.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号