首页> 中文期刊> 《中国科学 》 >The d-orbital coupling modulation of CuNi alloy for acetonitrile electrochemical reduction and in-situ hydrogenation behavior characterization

The d-orbital coupling modulation of CuNi alloy for acetonitrile electrochemical reduction and in-situ hydrogenation behavior characterization

         

摘要

Electrochemical reduction of acetonitrile to ethylamine with a high selectivity is a novel approach to manufacture valuable primary amines which are important raw material in organic chemical industry. However, the poor ethylamine Faradic efficiency(FE_(ethylamine)) and catalyst stability at the high current density prohibit this method from being practically used. Herein, CuNi alloy ultrafine-nano-particles based on the d-orbital coupling modulation were synthesized through the electrodeposition and their catalytic performance towards acetonitrile reduction reaction(ACNRR) has been systematically studied. The highest FE_(ethylamine)(97%) is achieved with the current density of-114 mA cm^(-2). For practical application, the current density can reach-602.8 mA cm^(-2) with 82.8% FE_(ethylamine)maintained. With the appearance of other organics which co-exist with acetonitrile in the SOHIO process, CuNi can also hydrogenate acetonitrile in it with more than 80% FE_(ethylamine). Our in-situ spectroscopy analysis and DFT calculations towards the acetonitrile hydrogenation behavior reveal that the evenly dispersed Ni in Cu modulates the dband so as to endow CuNi with the better acetonitrile adsorption, milder binding energy with the reaction intermediates, smaller barrier for *CH_3CH_2NH_2 desorption and higher ability for H_2O dissociation to provide *H.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号