首页> 中文期刊> 《合成化学》 >Molecular Designs and Properties of Highly Efficient Blue Emitters for OLEDs

Molecular Designs and Properties of Highly Efficient Blue Emitters for OLEDs

         

摘要

Advances made in the molecular design of modern optoelectronic materials have made significant contributions toward the development of organic electronics. The organic light-emitting devices (OLEDs) employing monodisperse or polymeric conjugated materials possess the most promising prospects. However, materials suitable for long-term use as blue light emitters are still far from optimization in terms of stability.In the past few years, interesting materials based on 9,9-diaryl-substituted fluorene as a core structure have been developed in our laboratory. We developed a series of efficient and morphologically stable pyrimidine-containing 9,9'-spirobifluorene-cored oligoaryls as pure blue emitters. The steric hindrance inherent with the molecular structure renders the material with a record-high thin-film PL quantum yield of ~95% and a glass transition temperature (Tg) of ~200 ℃.Blue OLEDs employing this thermally stable compound as the emitting host exhibit unusual endurance for high currents. Injection current over 5,000 mA/cm2 and maximal brightness of~80,000 cd/m2 had been demonstrated, representing the highest values reported for blue OLEDs under dc driving. In addition, a series of oligofluorene homologues have been synthesized. These oligofluorenes exhibit interesting reversible bipolar redox properties and excellent morphological and thermal stability. Furthermore, nondispersive ambipolar high hole and electron mobilities over 10-3 cm2/V.s can be achieved with these oligo(9,9-diarylfluorene)s. In particular, the electron mobility observed represents the highest ever reported for amorphous molecular solids. These intriguing properties together with the high quantum yields in thin films make these oligo(9,9-diarylfluorene)s are promising for OLEDs applications as efficient blue emitters. In this meeting, the synthesis and properties of these materials and their highly efficient OLEDs device characteristics will be discussed.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号