首页> 中文期刊> 《中国机械工程学报 》 >On the Loads for Strength Design of Cutterhead of Full Face Rock Tunnel Boring Machine

On the Loads for Strength Design of Cutterhead of Full Face Rock Tunnel Boring Machine

         

摘要

Cutterhead loads are the key mechanical parameters for the strength design of the full face hard rock tunnel boring machine(TBM). Due to the brittle rock-breaking mechanism, the excavation loads acting on cutters fluctuate strongly and show some randomness. The conventional method that using combinations of some special static loads to perform the strength design of TBM cutterhead may lead to strength failure during working practice. In this paper, a three-dimensional finite element model for coupled Cutterhead–Rock is developed to determine the cutterhead loads. Then the distribution characteristics and the influence factors of cutterhead loads are analyzed based on the numerical results. It is found that, as time changes, the normal and tangential forces acting on cutters and the total torque acting on the cutterhead approximately distribute log normally, while the total thrusts acting on the cutterhead approximately show a normal distribution. Furthermore, the statistical average values of cutterhead loads are proportional to the uniaxial compressive strength(UCS) of cutting rocks. The values also change with the penetration and the diameter of cutterhead following a power function. Based on these findings, we propose a three-parameter model for the mean of cutterhead loads and a method of generating the random cutter forces. Then the strength properties of a typical cutterhead are analyzed in detail using loads generated by the new method. The optimized cutterhead has been successfully applied in engineering. The method in this paper may provide a useful reference for the strength design of TBM cutterhead.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号