首页> 中文期刊> 《中国化学工程学报:英文版》 >Mechanistic insights into homogeneous electrocatalytic reaction for energy storage using finite element simulation

Mechanistic insights into homogeneous electrocatalytic reaction for energy storage using finite element simulation

         

摘要

The application of homogeneous electrocatalytic reactions in energy storage and conversion has driven surging interests of researchers in exploring the reaction mechanisms of molecular catalysts.In this paper,homogeneous electrocatalytic reaction between hydroxymethylferrocene(HMF)and L-cysteine is intensively investigated by cyclic voltammetry and square wave voltammetry for which,the secondorder rate constant(k_(ec))of the chemical reaction between HMF^(+)and L-cysteine is determined via a 1D homogeneous electrocatalytic reaction model based on finite element simulation.The corresponding k_(ec)(1.1(mol·m^(-3))^(-1)·s^(-1))is further verified by linear sweep voltammograms under the same model.Square wave voltammetry parameters including potential frequency(f),increment(Estep)and amplitude(ESW)have been comprehensively investigated in terms of the voltammetric waveform transition of homogeneous electrocatalytic reaction.Specifically,the effect of potential frequency and increment is in accordance with the potential scan rate in cyclic voltammetry and the increase of pulsed potential amplitude results in a conspicuous split oxidative peaks phenomenon.Moreover,the proposed methodology of k_(ec)prediction is examined by hydroxyethylferrocene(HEF)and L-cysteine.The present work facilitates the understanding of homogeneous electrocatalytic reaction for energy storage purpose,especially in terms of electrochemical kinetics extraction and flow battery design.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号