首页> 中文期刊> 《中国航空学报:英文版》 >Numerical investigation on flow field characteristics of dual synthetic cold/hot jets using POD and DMD methods

Numerical investigation on flow field characteristics of dual synthetic cold/hot jets using POD and DMD methods

         

摘要

In order to improve the control ability of synthetic jets in compressible boundary layer,a novel control method based on dual synthetic cold/hot jets coupled control of velocity profile and temperature profile was proposed.As fundamental investigations on the effects of synthetic jet temperature on the jet behavior and flow field characteristics were essentially necessary,preliminary numerical simulations were conducted to study the influence of temperature(200 K and 400 K)on the flow field characteristics of synthetic jets using Large Eddy Simulations(LES)model.Time-averaged flow fields showed that different temperatures led to variable behavior of two strands of jets.For dual synthetic cold jets,a potential-core arose apparently with its height ranging from 0.01 to 0.03 m,while for dual synthetic hot jets,two strands of jets emerged downstream.The modal decomposition of instantaneous flow fields had been done using both Proper Orthogonal Decomposition(POD)and Dynamic Mode Decomposition(DMD).Various modes showed different characteristics of the flow fields.As the POD method focuses on the energy of flow while the DMD method focuses on the frequency,the first two modes had many similarities,but the third and fourth modes demonstrated completely different vortex structures.The current researches play a role of preliminary investigations for further and comprehensive exploration of novel flow control measures in global velocity field.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号