首页> 中文期刊>中国铁道科学 >高速铁路声屏障声学计算模式研究

高速铁路声屏障声学计算模式研究

     

摘要

基于多通道阵列式声源识别系统和多通道噪声振动实时采集分析系统,对京津城际和京沪高速铁路列车运行状态下的噪声源、空间声场分布以及声屏障降噪效果进行测试和分析.将高速列车声源等效为下部噪声和上部噪声两部分:下部噪声以轮轨噪声和车体气动噪声为主,其声源等效位置确定为轨面以上0.6m处;上部噪声以弓网噪声为主,其声源等效位置确定为轨面以上3.3m处.由此提出基于双声源作为等效声源和以1250 Hz作为等效频率的高速铁路声屏障声学计算模式,给出声屏障插入损失和加长量修正计算公式,所得到声屏障的声学计算结果与实测结果吻合.%Based on multi-channel aligned array sound source identification system and multi-channel noise vibration real-time acquisition analysis system, the noise source, the distribution of spatial sound field and the reduction effect of noise barrier were tested and analyzed under train operation state for Beijing-Tianjin intercity and Jing-Hu high-speed railway. The sound source of high-speed train is equivalent to lower part noise and upper part noise. The noise of lower part mainly includes wheel rail noise and the aerodynamic noise of car body, and its sound source is equivalent to 0. 6 m above rail surface. The noise of upper part is mainly pantograph-catenary noise, and its sound source is equivalent to 3. 3 m above rail surface. Therefore, the acoustic computing model for the noise barrier of high-speed railway is proposed, which is based on dual sound source as the equivalent sound source and 1 250 Hz as the equivalent frequency. The correction and calculation formula for the insertion loss and extension part of noise barrier is given. The obtained acoustic computing result of sound barrier agrees well with the measured result.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号