首页> 中文期刊> 《中国有色金属学报:英文版》 >CONTROLLING HIGHTEMPERATURE DEFORMATION BY VARYING MICROSTRUCTURE IN A Ti47Al2Cr2Nb ALLOY

CONTROLLING HIGHTEMPERATURE DEFORMATION BY VARYING MICROSTRUCTURE IN A Ti47Al2Cr2Nb ALLOY

         

摘要

A Ti 47Al 2Cr 2Nb alloy was made by powder extrusion methods. By varying extrusion temperature, different microstructures were produced. At an extrusion temperature of 1 400 ℃ (above α transus), a uniform, fully lamellar structure was observed. In contrast, when powders were extruded at 1 150 ℃, an inhomogeneous microstructure consisting of γ,α 2 and metastable β phases was obtained. It was demonstrated that, while alloy extruded at 1 400 ℃ exhibited an excellent creep resistance, alloy with the same composition extruded at 1 150 ℃ exhibited superplasticity. The good creep resistance was resulted from the presence of fine lamellae which restrict dislocation slip within γ grains. These fine lamellae also promote the nucleation of deformation twins which impede dislocation glide along the interfaces ( γ/γ and γ/α 2) and, thus, reduces creep rate. In the case of low temperature extrusion, an elongation value of over 300% was obtained at a strain rate of 2×10 -5 s -1 and at a temperature as low as 800 ℃, which is close to the ductile to brittle transition temperature. This is in contrast to the prior major observations of superplastic behaviors in TiAl in which typical temperatures of 1 000 ℃ have usually been required for superplasticity. It was proposed that the occurrence of superplasticity at 800 ℃ is caused by the presence of a B2 phase which, during superplastic deformation (grain boundary sliding), accommodates sliding strains to reduce the propensity for cavitation at grain triple junctions and, thus, delays the fracture process.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号