首页> 中文期刊>中国铸造 >Effect of harmonic magnetic field and pulse magnetic field on microstructure of high purity Cu during electromagnetic direct chill casting

Effect of harmonic magnetic field and pulse magnetic field on microstructure of high purity Cu during electromagnetic direct chill casting

     

摘要

The effects of two types of magnetic fields,namely harmonic magnetic field(HMF)and pulse magnetic field(PMF)on magnetic flux density,Lorentz force,temperature field,and microstructure of high purity Cu were studied by numerical simulation and experiment during electromagnetic direct chill casting.The magnetic field is induced by a magnetic generation system including an electromagnetic control system and a cylindrical crystallizer of 300 mm in diameter equipped with excitation coils.A comprehensive mathematical model for high purity Cu electromagnetic casting was established in finite element method.The distributions of magnetic flux density and Lorentz force generated by the two magnetic fields were acquired by simulation and experimental measurement.The microstructure of billets produced by HMF and PMF casting was compared.Results show that the magnetic flux density and penetrability of PMF are significantly higher than those of HMF,due to its faster variation in transient current and higher peak value of magnetic flux density.In addition,PMF drives a stronger Lorentz force and deeper penetration depth than HMF does,because HMF creates higher eddy current and reverse electromagnetic field which weakens the original electromagnetic field.The microstructure of a billet by HMF is composed of columnar structure regions and central fine grain regions.By contrast,the billet by PMF has a uniform microstructure which is characterized by ultra-refined and uniform grains because PMF drives a strong dual convection,which increases the uniformity of the temperature field,enhances the impact of the liquid flow on the edge of the liquid pool and reduces the curvature radius of liquid pool.Eventually,PMF shows a good prospect for industrialization.

著录项

  • 来源
    《中国铸造》|2021年第2期|141-146|共6页
  • 作者单位

    Key Lab of Electromagnetic Processing of Materials Ministry of Education Northeastern University Shenyang 110819 China;

    School of Materials Science and Engineering Northeastern University Shenyang 110819 China;

    School of Materials Science and Engineering Northeastern University Shenyang 110819 China;

    Key Lab of Electromagnetic Processing of Materials Ministry of Education Northeastern University Shenyang 110819 China;

    School of Materials Science and Engineering Northeastern University Shenyang 110819 China;

    Key Lab of Electromagnetic Processing of Materials Ministry of Education Northeastern University Shenyang 110819 China;

    School of Materials Science and Engineering Northeastern University Shenyang 110819 China;

    Key Lab of Electromagnetic Processing of Materials Ministry of Education Northeastern University Shenyang 110819 China;

    School of Materials Science and Engineering Northeastern University Shenyang 110819 China;

    Key Lab of Electromagnetic Processing of Materials Ministry of Education Northeastern University Shenyang 110819 China;

    School of Materials Science and Engineering Northeastern University Shenyang 110819 China;

  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 铜;
  • 关键词

  • 入库时间 2023-07-26 00:16:38

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号