首页> 中文期刊>物理学报 >利用高阶拉盖尔-高斯横模精确测量法布里-珀罗腔内原子的运动轨迹∗

利用高阶拉盖尔-高斯横模精确测量法布里-珀罗腔内原子的运动轨迹∗

     

摘要

A coupled quantum system composed of cavity field and atoms is one of the main research contents of cavity quantum electrodynamics. It can be used to realize single atom manipulation and measurement, and has important significance for studying the interaction between light and the atom, preparing quantum states and quantum entanglement. Current research work mainly focuses on two aspects. One is to achieve the atom trapping via the feedback control of the trapping laser intensity. The other is to measure the single atomic motion in a Fabry-Perot cavity by using Hermite-Gaussian transverse modes. The detection of the atomic trajectories has been realized via the observation of transmission spectra of the strong coupling system composed of cold atoms and Hermite-Gaussian transverse modes in a Fabry-Perot cavity. In order to observe the atomic motion trajectories in the cavity, we theoretically study the transmission spectrum of a strong coupling system composed of cold atoms and Laguerre-Gaussian transverse modes in a Fabry-Perot cavity in this paper. We calculate the relationship between the coupling coefficient and the mode number of Laguerre-Gaussian transverse modes. The result shows that with the increase of Laguerre-Gaussian transverse mode number, the maximum coupling coefficient between the atoms and cavity fields is almost unchanged, so the contrast of the detected spectrum is nearly independent of the mode number. Analysis shows that Laguerre-Gaussian transverse mode provides more abundant information about atomic motion trajectory than Hermite-Gaussian transverse mode. The field distribution of Laguerre-Gaussian transverse mode is ring-shaped. Owing to the ring shape, the atoms dropped at different positions experience different electric field intensities, and the detected transmission spectra are changed. Therefore, we can implement the high precision distinguishment of the atomic trajectories by observing the features of the transmission spectra such as the number of the transmission peaks and their positions. Furthermore, a small deviation of the atomic motion trajectories, on the edges of the rings of the electric field, may induce great change in transmission spectrum, and then we can very accurately detect the atomic motion around these positions.

著录项

  • 来源
    《物理学报》|2015年第22期|1-10|共10页
  • 作者单位

    西安交通大学理学院应用物理系;

    西安 710049;

    西安交通大学理学院应用物理系;

    西安 710049;

    西安交通大学理学院应用物理系;

    西安 710049;

    西安交通大学理学院应用物理系;

    西安 710049;

    西安交通大学理学院应用物理系;

    西安 710049;

    西安交通大学理学院应用物理系;

    西安 710049;

  • 原文格式 PDF
  • 正文语种 chi
  • 中图分类
  • 关键词

    光学微腔; 拉盖尔-高斯光; 原子轨迹;

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号