首页> 中文期刊>中国高等学校学术文摘·建筑与土木工程 >Time-domain and frequency-domain approaches to identification of bridge flutter derivatives

Time-domain and frequency-domain approaches to identification of bridge flutter derivatives

     

摘要

Flutter derivatives are essential for flutter analysis of long-span bridges, and they are generally identified from the vibration testing data of a sectional model suspended in a wind tunnel. Making use of the forced vibration testing data of three sectional models,namely, a thin-plate model, a nearly streamlined model,and a bluff-body model, a comparative study was made to identify the flutter derivatives of each model by using a time-domain method and a frequency-domain method. It was shown that all the flutter derivatives of the thin-plate model identified with the frequency-domain method and time-domain method, respectively, agree very well. Moreover, some of the flutter derivatives of each of the other two models identified with the two methods deviate to some extent. More precisely, the frequency-domain method usually results in smooth curves of the flutter derivatives.The formulation of time-domain method makes the identification results of flutter derivatives relatively sensitive to the signal phase lag between vibration state vector and aerodynamic forces and also prone to be disturbed by noise and nonlinearity.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号