首页> 外文学位 >Modeling Gas Budgets in Marginal Sea Ice Zones
【24h】

Modeling Gas Budgets in Marginal Sea Ice Zones

机译:模拟边缘海冰区的天然气预算

获取原文
获取原文并翻译 | 示例

摘要

Biogeochemical gas budgets at high-latitude regions and sea ice zones are a source of uncertainty in climate models. The four main processes that regulate these budgets include advection, ventilation, mixing, and accumulation/release from sea ice. Considering the scarcity of data in sea ice zones, specifically during winter time, the environment is too poorly sampled to constrain these processes through direct measurements; hence we proposed models to systematically investigate these processes. The models proposed in this dissertation consist of regional numerical ice-ocean models, 1D forward and inversion numerical models, and analytical models.;Manuscript I of this dissertation focuses on a 3D regional Arctic ice-ocean models. The models are based on MIT general circulation model (MITgcm) code. We used 36 km, 9 km and 2 km horizontal resolution of regional MITgcm configuration with fine vertical spacing to evaluate the capability of the model to reproduce the physical parameters that affect the budget. The model outputs of interest from these simulations are sea ice concentration, sea ice speed, water velocities, and mixed layer depth. From gas budget point of view, sea ice concentration and speed effect ventilation, changes in mixed layer depth lead to mixing, and resolving water velocities quantifies the effects of advection.;To assess the accuracy of model, we compared the model outputs to existing field data. We found model sea ice concentration and speed follow data with good fidelity. The model demonstrated the capacity to capture the broad trends in the mixed layer although with a significant bias. We saw improvement in mixed layer depth accuracy with reducing the horizontal resolution of the model. Finally we showed modeled water velocities have low correlation with point-wise in situ data. This correlation remained low in all three model resolution simulations and we argued that is largely due to the quality of the input atmospheric forcing.;Manuscript II of this dissertation focuses on 1D forward and inversion modeling of gas budgets. Following our results from the first manuscript, we approximated the effects of advection analytically and utilized a 1D model and its inversion code. We applied the model with combination of numerical passive tracers to reproduce the 53 radon profiles gathered in the Arctic. The optimization based on inversion model reduced the uncertainties in initial conditions and supported the 1D model. We showed mixing, if not resolved, can introduce up to 50% error in estimated budgets. When effects of mixing, melt/freeze and advection taken into the account, we show current estimates of gas exchanges under predicts surface flux in almost cover sea ice areas.;Manuscript III presents a new approach in modeling gas exchange in sea ice zones. In this study a sea state dependent gas exchange parametric model is developed based on the turbulent kinetic energy dissipation rate. After comparing this model results with data in the Open Ocean, lakes and marginal ice zones, we applied it to a numerical ice-ocean model of Arctic Ocean. Finally, it is shown that, under the present conditions, gas flux into the Arctic Ocean may be overestimated by 10% if a conventional parameterization is used.;In summary, the work presented in this dissertation evaluates and quantifies the effects of environmental forcing on gas budgets in marginal ice zones and offered insight into main factors regulating near surface gas budgets in marginal sea ice zones.
机译:高纬度地区和海冰区的生物地球化学气体预算是气候模型不确定性的来源。调节这些预算的四个主要过程包括对流,通风,混合以及海冰的积累/释放。考虑到海冰区域的数据稀缺,特别是在冬季,环境采样太差,无法通过直接测量来限制这些过程;因此,我们提出了模型来系统地研究这些过程。本文提出的模型由区域冰洋数值模型,一维正反演数值模型和解析模型组成。本文的论文一集中研究了一个3D区域北极冰洋模型。这些模型基于MIT通用流通模型(MITgcm)代码。我们使用区域MITgcm配置的36 km,9 km和2 km水平分辨率以及良好的垂直间距来评估模型再现影响预算的物理参数的能力。这些模拟中感兴趣的模型输出是海冰浓度,海冰速度,水速和混合层深度。从气体预算的角度来看,海冰浓度和速度效应通风,混合层深度的变化会导致混合,并且解析水的速度量化了对流的影响。为了评估模型的准确性,我们将模型输出与现有油田进行了比较数据。我们发现模型海冰浓度和速度跟随数据具有良好的保真度。该模型展示了捕获混合层中广泛趋势的能力,尽管存在明显偏差。我们看到了混合层深度精度的提高,同时降低了模型的水平分辨率。最后,我们表明建模的水速度与点状原位数据的相关性较低。在所有三个模型分辨率模拟中,这种相关性仍然很低,我们认为这在很大程度上是由于输入大气强迫的质量所致。本论文的论文二集中于一维气体预算的正演和反演建模。根据第一份手稿的结果,我们通过分析近似地估计了平流的影响,并利用了一维模型及其反演代码。我们将该模型与数字无源示踪剂结合使用,以再现在北极收集的53 ra剖面。基于反演模型的优化减少了初始条件的不确定性,并支持一维模型。我们发现,如果不解决混合问题,则可能会导致估算预算中出现多达50%的错误。当考虑到混合,融化/冻结和对流的影响时,我们在预测几乎覆盖的海冰区域的表面通量的情况下,显示了对气体交换的当前估计。《手稿III》提出了一种模拟海冰区域气体交换的新方法。在这项研究中,基于湍动能耗散率,建立了一个依赖于海状态的气体交换参数模型。在将该模型结果与公海,湖泊和边缘冰区的数据进行比较之后,我们将其应用于北冰洋的数值冰海模型。最后,表明在当前条件下,如果使用常规参数化,进入北冰洋的气体通量可能被高估了10%。总之,本文的工作评估和量化了环境强迫对北冰洋的影响。边缘冰区的天然气预算,并为调节边缘海冰区域的近地表天然气预算的主要因素提供了见识。

著录项

  • 作者

    Bigdeli, Arash.;

  • 作者单位

    University of Rhode Island.;

  • 授予单位 University of Rhode Island.;
  • 学科 Physical oceanography.;Chemical oceanography.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 128 p.
  • 总页数 128
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号