首页> 外文学位 >Spin-transfer-torque effect in ferromagnets and antiferromagnets .
【24h】

Spin-transfer-torque effect in ferromagnets and antiferromagnets .

机译:铁磁体和反铁磁体中的自旋转移转矩效应。

获取原文
获取原文并翻译 | 示例

摘要

Spintronics in metallic multilayers, composed of ferromagnetic (F) and non-magnetic (N) metals, grew out of two complementary discoveries. The first, Giant Magneto-resistance (GMR), refers to a change in multilayer resistance when the relative orientation of magnetic moments in adjacent F-layers is altered by an applied magnetic field. The second, Spin-Transfer-Torque (STT), involves a change in the relative orientation of F-layer moments by an electrical current. This novel physical phenomenon offers unprecedented spatial and temporal control over the magnetic state of a ferromagnet and has tremendous potential in a broad range of technologies, including magnetic memory and recording.;Because of its small size (10nm), point contact is a very efficient probe of electrical transport properties in extremely small sample volumes yet inaccessible with other techniques. We have observed the point-contact excitations in magnetic multilayers at room temperature and extended the capabilities of our point-contact technique to include the sensitivity to wavelengths of the current-induced spin waves.;Recently MacDonald and coworkers have predicted that similar to ferromagnetic multilayers, the magnetic state of an antiferromagnetic (AFM) system can affect its transport properties and result in antiferromagnetic analogue of giant magnetoresistance (GMR) = AGMR; while high enough electrical current density can affect the magnetic state of the system via spin-transfer-torque effect. We show that a high density dc current injected from a point contact into an exchange-biased spin valve (EBSV) can systematically change the exchange bias, increasing or decreasing it depending on the current direction. This is the first evidence for current-induced effects on magnetic moments in antiferromagnetic (FeMn or IrMn) metals.;We searched for AGMR in multilayers containing different combinations of AFM=FeMn and F=CoFe layers. At low currents, no magnetoresistance (MR) was observed in any samples suggesting that no AGMR is present in these samples. In samples containing F-layers, high current densities sometimes produced a small positive MR -- largest resistance at high fields. For a given contact resistance, this MR was usually larger for thicker F-layers, and for a given current, it was usually larger for larger contact resistances (smaller contacts). We tentatively attribute this positive MR to suppression at high currents of spin accumulation induced around and within the F-layers.
机译:由铁磁性(F)和非磁性(N)金属组成的金属多层自旋电子学是从两个互补的发现中发展而来的。第一种是巨磁阻(GMR),是指当相邻F层中的磁矩的相对方向因施加的磁场而改变时,多层电阻的变化。第二种自旋传递扭矩(STT)涉及通过电流改变F层力矩的相对方向。这种新颖的物理现象为铁磁体的磁态提供了空前的时空控制,并在包括磁存储和记录在内的多种技术中具有巨大潜力;由于其尺寸小(<10nm),点接触是非常重要的。在极小的样品体积中有效地探测电传输特性,而其他技术则无法实现。我们已经观察到室温下磁性多层体中的点接触激发,并扩展了点接触技术的功能,以包括对电流感应自旋波的波长的敏感性。最近,MacDonald和同事已经预测到,类似于铁磁多层体,反铁磁(AFM)系统的磁态会影响其传输性能,并导致巨磁阻(GMR)= AGMR的反铁磁模拟。而足够高的电流密度会通过自旋传递转矩效应影响系统的磁状态。我们表明,从点触点注入到交流偏置自旋阀(EBSV)中的高密度直流电流可以系统地改变交流偏置,根据电流方向增大或减小它。这是电流感应对反铁磁(FeMn或IrMn)金属的磁矩产生影响的第一个证据。;我们在包含AFM = FeMn和F = CoFe层的不同组合的多层结构中搜索了AGMR。在低电流下,任何样品均未观察到磁阻(MR),表明这些样品中不存在AGMR。在含有F层的样品中,高电流密度有时会产生小的正MR值-在高电场下最大的电阻。对于给定的接触电阻,对于较厚的F层,该MR通常较大;对于给定的电流,对于较大的接触电阻(较小的接触),该MR通常较大。我们暂时将这种正MR归因于在F层周围和F层内部感应的自旋积累的高电流下的抑制。

著录项

  • 作者

    Wei, Zhen.;

  • 作者单位

    The University of Texas at Austin.;

  • 授予单位 The University of Texas at Austin.;
  • 学科 Physics Electricity and Magnetism.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 150 p.
  • 总页数 150
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号