首页> 外文学位 >An Investigation of Optimal Pressurization for Buildings in Hot and Humid Climates
【24h】

An Investigation of Optimal Pressurization for Buildings in Hot and Humid Climates

机译:湿热气候下建筑物的最佳加压研究

获取原文
获取原文并翻译 | 示例

摘要

Buildings in a hot and humid climate usually are kept at a positive pressurization level to avoid infiltration induced issues such as mold growth within building envelopes. This dissertation combines existing models of infiltration and mold growth to predict the influence of pressurization level on the risk of mold growth. The simulation results indicate that a 3 meter high unpressurized building in College Station, TX with 22°C indoor temperature set-pint will experience an annual increase in mold index, and 1.5 Pa positive pressurization should theoretically eliminate the long-term risk of an increasing mold index on all walls. The model also indicates that only 1 Pa pressurization is required if the same building is moved to Fort Worth, TX and no pressurization is required if it is moved to Atlanta, GA.;Furthermore, a field experiment indicates that the conventional pressurization system fails to pressurize each floor of the eight-floor Harrington Tower building equally due to stack effect; extra make-up air is required to compensate the leaked air through the over-pressurized floors which results in extra energy consumption. An Internal Fan Balancing Pressurization System is proposed to solve this problem. The building energy simulation results suggest that the annual energy cost savings from using the proposed system can range from 3.7% to 6.7% of the total utility bill depending on different assumptions. To verify the feasibility of the proposed system, a scaled three-floor model is developed; on the scale model the Internal Fan Balancing System is able to reduce 28% to 32% of required make-up air flow by keeping better pressurization levels.
机译:通常在炎热潮湿的气候中将建筑物保持在正压力水平,以避免渗透引起的问题,例如建筑物围护结构中霉菌的生长。本文结合现有的渗透和霉菌生长模型,预测了加压水平对霉菌生长风险的影响。仿真结果表明,德克萨斯州大学城一栋3米高的无压建筑物,室内温度设定为22°C,霉菌指数将逐年增加,而1.5 Pa的正压理论上应消除长期升高的风险所有墙壁上的霉菌指数。该模型还表明,如果将同一建筑物移至德克萨斯州沃思堡,则仅需加压1 Pa;而如果将其移至佐治亚州亚特兰大,则无需加压;此外,现场实验表明,传统的加压系统无法满足要求。由于堆叠效应,对八层哈灵顿大厦的每一层均等地加压;需要额外的补充空气以补偿通过过压地板泄漏的空气,这会导致额外的能耗。为了解决这个问题,提出了一种内部风扇平衡增压系统。建筑能耗模拟结果表明,根据不同的假设,使用建议的系统每年可节省的能源成本可占总公用事业费用的3.7%至6.7%。为了验证所提出系统的可行性,开发了一个缩放的三层模型。在比例模型上,内部风扇平衡系统可通过保持较高的增压水平而将所需的补充空气流量减少28%至32%。

著录项

  • 作者

    Chen, Wei-Jen.;

  • 作者单位

    Texas A&M University.;

  • 授予单位 Texas A&M University.;
  • 学科 Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 188 p.
  • 总页数 188
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号