首页> 外文学位 >SR proteins mediate the coupling of Rous sarcoma virus RNA splicing and polyadenylation control.
【24h】

SR proteins mediate the coupling of Rous sarcoma virus RNA splicing and polyadenylation control.

机译:SR蛋白介导劳斯肉瘤病毒RNA剪接和聚腺苷酸化控制的耦合。

获取原文
获取原文并翻译 | 示例

摘要

Rous sarcoma virus (RSV) requires large amounts of unspliced RNA for viral replication. Splicing and polyadenylation are coupled in the cells that RSV infects, which raises the question of how viral RNA is efficiently polyadenylated in the absence of splicing. Optimal RSV polyadenylation requires a far-upstream splicing control element, the negative regulator of splicing (NRS). This doctoral dissertation explores the link between NRS-mediated splicing inhibition and efficient polyadenylation. As a beginning to understanding the role of the NRS in RSV polyadenylation, the viral polyadenylation signal was characterized in vitro. The RSV substrate showed little or no polyadenylation in vitro, indicating that the polyadenylation signal is suboptimal. Polyadenylation sites often have identifiable upstream and downstream elements (USEs and DSEs) in close proximity to the conserved AAUAAA signal, however, the USEs and DSEs in RSV deviate from those found in efficiently used sites. Analysis of chimeric substrates composed of the USEs and DSEs of the well-characterized SV40 late polyadenylation signal in combination with elements from RSV indicated that USEs and DSEs from RSV are suboptimal but functional. Further analysis showed that the inactivity of the RSV polyadenylation site was at least in part due to poor CstF64 binding, consistent with poor polyadenylation factor binding sites as the basis for inefficient use of the RSV polyadenylation site and pointing to the importance of additional elements within RSV RNA in promoting 3' end formation.;Previous work has indicated that the NRS contributes to efficient viral polyadenylation. The NRS binds several factors involved in splicing (e.g., SR proteins and U1 snRNP) and is proposed to function as a pseudo-5' splice site that sequesters 3' splice sites in a non-productive splicing complex. The hypothesis was that this nonproductive splicing complex stimulates polyadenylation in the absence of splicing. In vitro, however, the NRS alone activated RSV polyadenylation. The polyadenylation stimulatory effect did not require the snRNP binding sites or a downstream 3' splice site, but SR proteins were required. Consistent with this, high-affinity binding sites for specific SR proteins were able to stimulate RSV polyadenylation both in vitro and in vivo. The high-affinity sites improved polyadenylation in proviral clones only when the NRS-3'splice site complex could form, but deletions that positioned the SR protein-binding sites closer to the polyadenylation site eliminated this requirement. These results suggest a previously undescribed role for SR proteins in RSV polyadenylation and a more general role for SR proteins in polyadenylation of cellular mRNAs.;The second part of this dissertation examined four intronic mutations and one exonic mutation in the pituitary homeobox transcription factor 2 (PITX2) gene that are associated with Axenfeld-Rieger syndrome (ARS). PITX2 isoform C minigenes were used to address the hypothesis that the mutations affect RNA splicing. The mutations analyzed included a G→T mutation within the AG 3' splice site junction of exon 4 (IVS4-1G→T), a G→C mutation at position +5 of the 5' splice site of exon 4 (IVS4+5G→C), an A→G substitution at position -11 of the 3' splice site of exon 5 (IVS5-11A→G), a C→→A mutation at position +62 of the 3' splice site of exon 4 (IVS4-62C→A), and a conservative mutation within exon 5 (IVS5+460C→T). While no splicing defects were seen with the IVS4-62C→A and IVS5+460C→T mutations, IVS4+5G→C showed 71% retention of the intron between exons 4 and 5, and poorly expressed protein. Wild-type protein levels were proportionally expressed from correctly spliced mRNA. IVS4-1G→T shifted splicing to a new AG and resulted in a severely truncated, poorly expressed protein. Similarly, IVS5-11A→G shifted splicing to a newly created upstream AG and resulted in generation of truncated protein. This is the first evidence to suggest aberrant RNA splicing as the mechanism underlying ARS in some patients, and the data suggest that the magnitude of the splicing defect may contribute to the variability of ARS disease phenotypes.
机译:劳斯肉瘤病毒(RSV)需要大量未剪接的RNA才能进行病毒复制。剪接和聚腺苷酸化在RSV感染的细胞中偶联,这引发了一个问题,即在没有剪接的情况下病毒RNA如何有效地被聚腺苷酸化。最佳的RSV聚腺苷酸化需要一个上游的拼接控制元件,即拼接的负调节剂(NRS)。该博士论文探讨了NRS介导的剪接抑制与有效聚腺苷酸化之间的联系。为了开始理解NRS在RSV聚腺苷酸化中的作用,在体外对病毒的聚腺苷酸化信号进行了表征。 RSV底物在体外几乎没有或没有聚腺苷酸化,表明聚腺苷酸化信号不是最理想的。聚腺苷酸化位点通常在与保守的AAUAAA信号非常接近的位置具有可识别的上游和下游元素(USE和DSE),但是,RSV中的USE和DSE与有效使用的位点不同。对由特征明确的SV40晚期聚腺苷酸化信号的USE和DSE组成的嵌合底物与RSV的元素进行的分析表明,RSV的USE和DSE次优,但具有功能。进一步的分析表明,RSV聚腺苷酸化位点的失活至少部分是由于不良的CstF64结合,与不良的聚腺苷酸化因子结合位点相一致,是无效使用RSV聚腺苷酸化位点的基础,并指出了RSV中其他元素的重要性RNA促进3'末端形成。;先前的研究表明NRS有助于有效的病毒聚腺苷酸化。 NRS结合了剪接中涉及的几个因子(例如,SR蛋白和U1 snRNP),并被提议作为伪5′剪接位点起作用,其在非生产性剪接复合物中隔离3′剪接位点。假设是这种非生产性的剪接复合物在没有剪接的情况下刺激了聚腺苷酸化。但是,在体外,仅NRS会激活RSV聚腺苷酸化。聚腺苷酸化刺激作用不需要snRNP结合位点或下游3'剪接位点,但需要SR蛋白。与此相一致,特定SR蛋白的高亲和力结合位点能够在体外和体内刺激RSV聚腺苷酸化。仅当可以形成NRS-3'剪接位点复合物时,高亲和力位点才能改善原病毒克隆中的聚腺苷酸化,但将SR蛋白结合位点定位得更靠近聚腺苷酸化位点的缺失消除了这一要求。这些结果表明SR蛋白在RSV聚腺苷酸化中的作用是前所未有的,而SR蛋白在细胞mRNA的聚腺苷酸化中的作用是更普遍的。;本论文的第二部分研究了垂体同源盒转录因子2中的四个内含子突变和一个外显子突变。与Axenfeld-Rieger综合征(ARS)相关的PITX2)基因。 PITX2同工型C小基因用于解决突变影响RNA剪接的假设。分析的突变包括外显子4的AG 3'剪接位点连接处的G→T突变(IVS4-1G→T),外显子4的5'剪接位点+5位置的G→C突变(IVS4 + 5G →C),在外显子5的3'剪接位点的-11位(IVS5-11A→G)发生A→G取代,在外显子4的3'剪接位点+62的C→→A突变( IVS4-62C→A)和外显子5内的保守突变(IVS5 + 460C→T)。虽然在IVS4-62C→A和IVS5 + 460C→T突变中未发现剪接缺陷,但IVS4 + 5G→C显示外显子4和5之间内含子的保留率为71%,并且蛋白质表达较差。野生型蛋白质水平从正确剪接的mRNA中按比例表达。 IVS4-1G→T将剪接转移到新的AG上,并导致严重截短,表达不良的蛋白质。同样,IVS5-11A→G将剪接转移到新创建的上游AG上,并导致产生截短的蛋白质。这是第一个证据表明在某些患者中异常的RNA剪接是ARS的潜在机制,并且数据表明剪接缺陷的程度可能与ARS疾病表型的变异有关。

著录项

  • 作者

    Maciolek, Nicole L.;

  • 作者单位

    The Medical College of Wisconsin.;

  • 授予单位 The Medical College of Wisconsin.;
  • 学科 Biology Molecular.;Biology Virology.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 219 p.
  • 总页数 219
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 高分子化学(高聚物);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号