首页> 外文学位 >Modeling the transmission dynamics of the dengue virus.
【24h】

Modeling the transmission dynamics of the dengue virus.

机译:模拟登革热病毒的传播动力学。

获取原文
获取原文并翻译 | 示例

摘要

Dengue (pronounced den'guee) Fever (DP) and Dengue Hemorrhagic Fever (DHF), collectively known as "dengue," are mosquito-borne, potentially mortal, flu-like viral diseases that affect humans worldwide ([51], [4], [1]). Transmitted to humans by the bite of an infected mosquito, dengue is caused by any one of four serotypes, or antigen-specific viruses. In this thesis, both the spatial and temporal dynamics of dengue transmission are investigated. Different chapters present new models while building on themes of previous chapters. In Chapter 2, we explore the temporal dynamics of dengue viral transmission by presenting and analyzing an ODE model that combines an SIR human host- with a multi-stage SI mosquito vector transmission system. In the case where the juvenile populations are at carrying capacity, juvenile mosquito mortality rates are sufficiently small to be absorbed by juvenile maturation rates, and no humans die from dengue, both the analysis and numerical simulations demonstrate that an epidemic will persist if the oviposition rate is greater than the adult mosquito death rate. In Chapter 3, we present and analyze a non-autonomous, non-linear ODE system that incorporates seasonality into the modeling of the transmission of the dengue virus. We derive conditions for the existence of a threshold parameter, the basic reproductive ratio, R0 , denoting the expected number of secondary cases produced by a typically infective individual. In Chapter 4, we present and analyze a non-linear system of coupled reaction-diffusion equations modeling the virus' spatial spread. In formulating our model, we seek to establish the existence of traveling wave solutions and calculate spread rates for the spatial dissemination of the disease. We determine that the epidemic wave speed increases as average annual, and in our case, winter, temperatures increase. In Chapter 5, we present and analyze an ODE model that incorporates two serotypes of the dengue virus and allows for the possibility of both primary and secondary infections with each serotype. We obtain an analytical expression for the basic reproductive number, R0 , that defines it as the maximum of the reproduction numbers for each strain/serotype of the virus. In each chapter, numerical simulations are conducted to support the analytical conclusions.
机译:登革热(DP)和登革出血热(DHF),统称为“登革热”,是蚊子传播的,可能致命的,类似流感的病毒性疾病,影响全世界的人类([51],[4 ],[1])。登革热是由被感染的蚊子叮咬传播给人类的,由四种血清型或抗原特异性病毒中的任何一种引起。本文研究了登革热传播的时空动态。在前几章的主题的基础上,不同的章节介绍了新的模型。在第二章中,我们通过介绍和分析将SIR人类宿主与多阶段SI蚊媒传播系统相结合的ODE模型,探索登革热病毒传播的时间动态。在未成年人口的情况下,未成年蚊子的死亡率足以被未成年蚊子吸收,而且没有人死于登革热,分析和数值模拟均表明,如果产卵率高,这种流行病将持续存在。大于成年蚊子的死亡率。在第3章中,我们介绍并分析了一种非自治,非线性的ODE系统,该系统将季节性因素纳入登革热病毒传播的模型中。我们得出阈值参数(基本繁殖率R0)的存在条件,该阈值表示典型感染个体产生的继发病例的预期数量。在第四章中,我们介绍并分析了一个非线性的耦合反应扩散方程的系统,该系统模拟了病毒的空间扩散。在建立模型时,我们试图建立行波解的存在并计算疾病传播的传播速度。我们确定流行病的波速随着年均增长而增加,在我们的案例中,冬季气温升高。在第5章中,我们介绍并分析了一种ODE模型,该模型结合了两种血清型的登革热病毒,并允许每种血清型同时感染原发性和继发性感染。我们获得了基本生殖数R0的解析表达式,将其定义为每种病毒/血清型的最大生殖数。在每一章中,都进行了数值模拟以支持分析结论。

著录项

  • 作者

    Katri, Patricia.;

  • 作者单位

    University of Miami.;

  • 授予单位 University of Miami.;
  • 学科 Applied Mathematics.;Health Sciences Epidemiology.;Biology Virology.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 169 p.
  • 总页数 169
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号