首页> 外文学位 >A hybrid genetic algorithm approach to global low-thrust trajectory optimization.
【24h】

A hybrid genetic algorithm approach to global low-thrust trajectory optimization.

机译:全局低推力轨迹优化的混合遗传算法。

获取原文
获取原文并翻译 | 示例

摘要

To expand mission capabilities that are required for exploration of the solar system, methodologies to design optimal low-thrust trajectories must be developed. However, low-thrust, multiple gravity-assist trajectories pose significant optimization challenges because of their expansive, multimodal design space. In this work, a technique is developed for global, low-thrust, interplanetary trajectory optimization through the hybridization of a genetic algorithm and a gradient-based direct method (GALLOP). The hybrid algorithm combines the effective global search capabilities of a genetic algorithm with the robust convergence and constraint handling of the local, calculus-based direct method. The automated approach alleviates the difficulty and biases of initial guess generation and provides near globally-optimal solutions. Both single objective and multiobjective implementations are developed. In the single objective implementation, the technique is applied to several complex low-thrust, gravity-assist trajectory scenarios, generating previously unpublished optimums. Specifically, the single objective hybrid algorithm generates apparent global optimums for a direct trajectory scenario to Mars, as well as gravity-assist trajectories with three intermediate flybys to Neptune and Pluto. The multiobjective implementation incorporates the NSGA-II algorithm to generate a Pareto front of solutions that are globally optimal in terms of both final delivered mass and time-of-flight in a single execution. The multiobjective hybrid algorithm is applied to a direct Earth-Mars rendezvous design scenario, successfully developing a Pareto front of near-globally optimal trajectories, enabling a tradeoff decision on the two objectives.
机译:为了扩展探索太阳系所需的任务能力,必须开发设计最佳低推力轨迹的方法。但是,低推力,多个重力辅助轨迹由于其广阔的多模态设计空间而面临着重大的优化挑战。在这项工作中,通过遗传算法和基于梯度的直接方法(GALLOP)的混合,开发了一种用于整体,低推力行星际轨迹优化的技术。混合算法将遗传算法的有效全局搜索功能与基于演算的局部直接方法的强大收敛性和约束处理功能结合在一起。自动化方法减轻了初始猜测产生的难度和偏差,并提供了接近全局最优的解决方案。开发了单目标和多目标实现。在单个目标实现中,该技术被应用于几种复杂的低推力,重力辅助轨迹方案,从而生成了以前未发布的最优方案。具体来说,单目标混合算法针对火星的直接轨迹场景以及带有三个中间飞越至海王星和冥王星的重力辅助轨迹,产生明显的全局最优。多目标实施方案结合了NSGA-II算法,以生成解决方案的Pareto前沿,这些解决方案在一次执行中就最终交付的质量和飞行时间而言在全局上都是最优的。将多目标混合算法应用于直接的地球-火星交会设计方案,成功开发了近全局最优轨迹的Pareto前沿,从而可以在两个目标之间做出权衡决策。

著录项

  • 作者

    Vavrina, Matthew A.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Aerospace.
  • 学位 M.S.
  • 年度 2008
  • 页码 143 p.
  • 总页数 143
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号