首页> 外文学位 >Structural studies of DN-cadherin, an invertebrate classical cadherin, and other, non-classical cadherins.
【24h】

Structural studies of DN-cadherin, an invertebrate classical cadherin, and other, non-classical cadherins.

机译:无脊椎动物经典钙粘蛋白DN-钙粘蛋白和其他非古典钙粘蛋白的结构研究。

获取原文
获取原文并翻译 | 示例

摘要

Classical cadherins, defined as those that interact with catenins via their cytoplasmic domains, are cell surface molecules required for the formation and maintenance of solid tissues in both vertebrate and invertebrate species. In vertebrates, classical cadherins mediate calcium-dependent cell-cell adhesion through a "strand-swapping" mechanism that involves reciprocal binding of the N-terminal strand from the first extracellular cadherin (EC) domain of each protomer into a receptor pocket of the partner molecule. This interaction and its resultant biophysical properties have likely evolved in response to biological constraints imposed by the development of complex tissues. Significantly, strand-swapping can only occur after a prodomain has been removed from the N-terminus of vertebrate classical cadherins by subtilisin-like proprotein convertases.;By contrast, though previous work has established the role of catenin-binding cadherins in cell-cell adhesion in invertebrate species, the adhesive mechanism of invertebrate classical cadherins, including Drosophila Neural (DN)-cadherin is unknown. Structure-guided sequence comparisons highlight several important differences between DN-cadherin and vertebrate classical cadherins. DN-cadherin and related proteins have significantly larger ectodomains (up to 19 extracellular cadherin [EC] repeats) than vertebrate classical cadherins (five EC repeats). The significance of this is unclear given that cadherins in vertebrate and invertebrate species span similar intercellular distances. Significantly, DN-cadherin and its invertebrate orthologs do not contain residues known to be necessary for strand-swapping, and their mechanism of adhesion remains unknown. Finally, it is not known whether DN-cadherin requires furin-like processing to achieve its mature adhesive form.;In this dissertation, we have undertaken bioinformatics, structural, and biophysical experiments to better understand DN-cadherin EC domain structure and the mechanism through which DN-cadherin and related proteins mediate intercellular adhesion in invertebrate species. We have used Zn-SAD to determine the structures of recombinant fragments of DN-cadherin that we predict to correspond to regions including the mature N-terminus. The structures reveal a "concatenated" cadherin domain arrangement created by a novel, non-calcium binding hairpin linker which confers a remarkable bend between EC domains 2' and 3' not observed in structures of vertebrate classical cadherins. We then employed bioinformatics analysis to determine whether this concatenated domain arrangement occurs in other cadherin proteins. Results of this analysis suggest that one or more concatenated cadherin domain regions similar to those observed in DN-cadherin occur in other non-classical cadherins, including FAT tumor suppressor, dachsous, and flamingo/CELSR. Finally, we used analytical ultracentrifugation (AUC) to test homophilic binding of the DN-cadherin three and four EC domain fragments used for crystallization. They were found to be monomeric, which prompted us to express larger protein regions and to test their ability to bind homophillically. Results from other AUC experiments show that recombinant proteins predicted to constitute the ten N-terminal most cadherin domains of mature DN-cadherin do in fact dimerize with affinity in the micromolar range.;The novel cadherin interdomain linker observed in the crystal structures described here provides new clues to understanding the architecture of the DN-cadherin ectodomain, and also that of other, related molecules. Specifically, the predicted presence of multiple concatenated EC domain regions---2 in DN-cadherin, 3-7 in Fat tumor suppressors, 3-5 in dachsous---presents the possibility that these molecules do not bridge the intercellular space by a linear arrangement of cadherin repeats as seen in vertebrate classical cadherins but may instead adopt globular quaternary structures that could in principle present binding surfaces involving more than one domain. Consistent with this, our AUC results implicate a larger protein region (≥ 4 EC domains) in DN-cadherin dimerization, several more than are known to be required in vertebrate classical cadherins. A multi-domain adhesive interface is consistent with observations that essential residues involved in the well-characterized strand-swap dimerization of vertebrate classical cadherins are absent from their invertebrate.
机译:经典的钙粘蛋白定义为通过其胞质结构域与连环蛋白相互作用的那些,是脊椎动物和无脊椎动物物种中形成和维持固体组织所需的细胞表面分子。在脊椎动物中,经典钙粘蛋白通过“链交换”机制介导钙依赖性细胞-细胞粘附,该机制涉及将N-末端链从每个protomer的第一个细胞外钙粘蛋白(EC)域相互结合到伴侣的受体袋中分子。这种相互作用及其产生的生物物理特性可能已经响应于复杂组织发展所施加的生物学限制而发展了。值得注意的是,只有通过枯草杆菌蛋白酶样前蛋白转化酶从脊椎动物经典钙粘蛋白的N-末端去除一个前结构域后,才能发生链交换;相反,尽管先前的工作已经确定了连接钙粘蛋白的钙粘蛋白在细胞中的作用在无脊椎动物物种的粘附中,无脊椎动物经典钙粘着蛋白(包括果蝇神经(DN)-钙粘着蛋白)的粘附机制尚不清楚。结构指导的序列比较突出显示了DN-钙粘着蛋白和脊椎动物经典钙粘着蛋白之间的几个重要区别。 DN-钙粘蛋白和相关蛋白的胞外域(最多19个细胞外钙粘蛋白[EC]重复序列)比脊椎动物的经典钙粘蛋白(五个EC重复序列)大得多。鉴于脊椎动物和无脊椎动物物种中的钙粘着蛋白跨越相似的细胞间距离,这一点的意义尚不清楚。重要的是,DN-钙粘着蛋白及其无脊椎动物直系同源物不含已知为链交换所必需的残基,并且它们的粘附机理仍然未知。最后,尚不清楚DN-钙粘着蛋白是否需要进行类似弗林蛋白酶的加工才能形成其成熟的粘附形式。本论文通过生物信息学,结构和生物物理实验,以更好地了解DN-钙粘着蛋白的EC结构域和机理。 DN-钙粘着蛋白和相关蛋白介导无脊椎动物物种的细胞间粘附。我们已经使用的Zn-SAD来确定DN钙粘蛋白的重组片段的结构,我们预测,以对应于区域包括成熟N末端。该结构揭示了由新颖的非钙结合发夹连接物产生的“连接的”钙粘蛋白结构域排列,其赋予了在脊椎动物古典钙粘蛋白结构中未观察到的EC结构域2'和3'之间的显着弯曲。然后,我们采用生物信息学分析来确定这种级联结构域排列是否在其他钙粘蛋白中发生。该分析结果表明,与DN-钙粘蛋白类似的一个或多个串联钙粘蛋白结构域区域出现在其他非经典钙粘蛋白中,包括FAT抑癌剂,dachsous和火烈鸟/ CELSR。最后,我们使用分析超速离心(AUC)来测试DN-钙黏着蛋白三个和四个用于结晶的EC域片段的同源结合。发现它们是单体的,这促使我们表达更大的蛋白质区域并测试它们同质结合的能力。其他AUC实验的结果表明,预计构成成熟DN-钙黏着蛋白的10个N端大多数钙黏着蛋白结构域的重组蛋白实际上在微摩尔范围内具有二聚体亲和力;在此处描述的晶体结构中观察到的新型钙黏着蛋白域间接头提供了了解DN-cadherin胞外域以及其他相关分子的结构的新线索。具体而言,预测存在多个串联的EC结构域区域-DN-钙黏着蛋白中为-2,脂肪肿瘤抑制物中为3-7,长脂状中为3-5-提出了这些分子不能通过A桥接细胞间空间的可能性。钙粘着蛋白的线性排列重复出现在脊椎动物的经典钙粘着蛋白中,但可以取而代之的是采用球状四元结构,原则上可以呈现涉及多个域的结合表面。与此相一致,我们的AUC结果表明DN-钙黏着蛋白二聚化涉及一个更大的蛋白质区域(≥4个EC域),比脊椎动物经典钙黏着蛋白所需的蛋白质区域多几个。多域粘合界面与以下观察结果一致,即脊椎动物的无钙粘着蛋白不存在与特征明确的链交换二聚化有关的必需残基。

著录项

  • 作者

    Walker, Melissa A.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Biology Neuroscience.;Chemistry Biochemistry.;Biophysics General.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 158 p.
  • 总页数 158
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号