首页> 外文学位 >Wettability on Nanoparticle Modified Surface: For Thermal Engineering
【24h】

Wettability on Nanoparticle Modified Surface: For Thermal Engineering

机译:纳米粒子改性表面上的润湿性:用于热工程

获取原文
获取原文并翻译 | 示例

摘要

In many thermal engineering applications, manipulation of the wetting behavior of liquids is used as a heat transfer enhancement strategy. Hydrophilicity, implying better wettability of liquid on solid surface, is preferred in some processes of air-conditioning and power-generation systems, such as dehumidification, evaporative cooled condensers, and pool boiling at high heat flux. Recent research in nanofluid boiling has revealed a manufacturing technique that is promising for air-conditioning and refrigeration applications. Nanofluid boiling on a solid surface induces deposition of the particles on the boiling surface, and these surfaces exhibit enhanced surface wettability. The properties of the deposited nanoporous layer are affected by the nanofluid boiling parameters such as nanoparticle concentration, nanoparticle type and size, solvent liquid type, boiling surface roughness, heat flux, boiling deposition duration and so on. In this thesis, an investigation of the effect of the nanofluid boiling conditions on the resulting wetting behavior of the treated surface is presented. Understanding how the fabrication process influences the wettability enhancement will guide the design of a surface treatment technique to achieve super-hydrophilicity. Experimental results show that boiling duration positively affects wettability, but little additional enhancement occurs for durations beyond 10 minutes of NBND. Surface wettability change by NBND is independent of boiling heat flux if the particle concentration is 1 wt.%, while at a low nanoparticle concentration of 0.01 wt.%, heat flux has some random influence. The overall systematic trend observed in the experimental study is that, the higher the nanoparticle concentration, the higher the wettability after NBND process, and at the same time the rougher the surface. The goal is to obtain superhydrophilic surface, which is achieved at high particle concentration (1%wt) NBND. Microscopic analysis gives evidence of particle deposition after NBND. Nano-micro structures were studied using SEM. The images show the growth of "nano-grass" like pseudoboehmite on aluminum surfaces after NBND using alumina nanofluids. Surface roughness factor was obtained from AFM scan and contact angle measurements independently, but show good agreement. If the coating was to be applied on fins to enhance their wettability, the height of a droplet on the fin surface would be a parameter that would affect the optimization of fin spacing. The higher the wettability, the lower the height of a droplet of fixed volume, so close fin spacing could be for dehumidification. Also, wetting experiments on rough surfaces with a porous coating by NBND at high nanoparticle concentration reveals the involvement of imbibition effect. This suggests the Hemi-wicking mode of wetting. In this thesis, the solid fraction ϕ is determined by contact angle data analysis and confirmed by linear fitting of data. Durability of the treated surface under dry conditions was studied by exposure to air. Air-borne contamination reduces surface wettability, but the NBND treated surface remained more hydrophilic than the untreated surfaces. Eventually, the surface treatment loss its ability to enhance wettability. A possible solution is recommendation as a future work. Overall, this study provides an understanding of wettability changes by nanofluid boiling nanoparticle deposition, and provides a guidance to the wettability treatment for thermal engineering applications.
机译:在许多热工程应用中,操纵液体的润湿行为被用作增强传热的策略。亲水性,意味着液体在固体表面具有更好的润湿性,在某些空调和发电系统过程中,例如除湿,蒸发冷却的冷凝器和高热通量下的池沸腾过程中,优选亲水性。纳米流体沸腾的最新研究表明,制造技术有望用于空调和制冷应用。在固体表面上沸腾的纳米流体引起颗粒在沸腾表面上的沉积,并且这些表面表现出增强的表面润湿性。沉积的纳米多孔层的性质受纳米流体沸腾参数的影响,所述纳米流体沸腾参数诸如纳米颗粒浓度,纳米颗粒类型和大小,溶剂液体类型,沸腾表面粗糙度,热通量,沸腾沉积持续时间等。在本文中,研究了纳米流体沸腾条件对处理后表面润湿行为的影响。了解制造工艺如何影响润湿性的提高将指导表面处理技术的设计,以实现超亲水性。实验结果表明,沸腾持续时间对润湿性有积极影响,但是对于NBND超过10分钟的持续时间,几乎没有其他增强作用。如果颗粒浓度为1 wt。%,则NBND引起的表面润湿性变化与沸腾热通量无关,而在0.01 wt。%的低纳米颗粒浓度下,热通量具有一些随机影响。在实验研究中观察到的总体系统趋势是,纳米颗粒浓度越高,NBND处理后的润湿性越高,同时表面越粗糙。目的是获得超亲水表面,该表面可在高颗粒浓度(1%wt)的NBND下实现。显微镜分析提供了NBND后颗粒沉积的证据。使用SEM研究了纳米微结构。图像显示在使用氧化铝纳米流体进行NBND后,铝表面上像拟勃姆石的“纳米草”的生长。表面粗糙度因子分别从AFM扫描和接触角测量获得,但显示出良好的一致性。如果将涂层施加到鳍片上以增强其润湿性,则鳍片表面上的液滴高度将是一个参数,它将影响鳍片间距的优化。湿润性越高,固定体积的液滴的高度越低,因此翅片间距很近,可以用于除湿。同样,在纳米颗粒浓度较高的情况下,使用NBND多孔涂层在粗糙表面上进行的润湿实验表明,吸收作用也参与其中。这表明润湿的半芯吸模式。在本文中,固体分数通过接触角数据分析确定,并通过数据线性拟合确定。通过暴露于空气中来研究在干燥条件下处理过的表面的耐久性。空气传播的污染物会降低表面的润湿性,但NBND处理过的表面比未处理过的表面仍具有更高的亲水性。最终,表面处理失去了增强润湿性的能力。建议将可能的解决方案作为未来的工作。总的来说,这项研究提供了通过纳米流体沸腾纳米颗粒沉积对润湿性变化的理解,并为热工程应用的润湿性处理提供了指导。

著录项

  • 作者

    Zhang, Feini.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Mechanical engineering.;Materials science.;Chemical engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 141 p.
  • 总页数 141
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号