首页> 外文学位 >Modeling multi-component fuel evaporation, flame propagation, and chemical kinetics processes for GDI engines.
【24h】

Modeling multi-component fuel evaporation, flame propagation, and chemical kinetics processes for GDI engines.

机译:为GDI发动机建模多组分燃料蒸发,火焰传播和化学动力学过程。

获取原文
获取原文并翻译 | 示例

摘要

The present work focused on improving combustion sub-models for modeling gasoline engines and on developing a new approach for modeling realistic fuel vaporization processes.;The present improved combustion sub-models are more precise and fundamentally based: (1) A transport equation residual model was introduced that differentiates between CO2 and H2O from the previous engine cycle or EGR and that which is from the combustion products of the current engine cycle. (2) A Damkohler criterion model was introduced to evaluate whether the combustion is locally controlled by flame propagation or by volumetric heat release for each flame containing cell. (3) An improved "primary heat release" calculation model that more precisely considers the chemical kinetics heat release in unburned regions of flame-containing cells was formulated. (4) A model for flame quench processes in lean mixtures was developed, and finally, (5) An integrated model was developed and used to simulate the combustion process in a Gasoline Turbocharged Direct Injection (GTDI) engine.;An existing continuous multi-component (CMC) fuel evaporation model was integrated with the improved combustion sub-models. However, the current continuous multi-component fuel model considers the source terms contributed by chemistry in the mean and the second moment transport equations and is shown to be more accurate than previous models that neglect this coupling. A "PRF adaptive" method was proposed that formulates a relationship between the fuel vapor mixture PRF number and the fuel vapor mixture composition.;A discrete multi-component (DMC) fuel evaporation model formalism was integrated with the improved combustion sub-models. In the integration, a blending cetane number approach was introduced where the cetane number is assumed to be a linear combination of the cetane numbers of the components.;A new DCMC fuel vaporization model was developed, and was implemented into a multi-dimensional CFD code. In the model, each family of hydrocarbons in a real hydrocarbon fuel was modeled as a PDF function of molecular weight, and the DCMC model can thus successfully distinguish the evaporation of components in different hydrocarbon families that have similar molecular weights. Some new features of the vaporization of realistic fuels were revealed using the DCMC model.
机译:本工作着重于改进用于对汽油发动机建模的燃烧子模型并开发一种用于对现实的燃料汽化过程进行建模的新方法。本改进的燃烧子模型更加精确并从根本上基于:(1)运输方程残差模型引入了区分先前发动机循环或EGR中的CO2和H2O以及当前发动机循环的燃烧产物的方法。 (2)引入了一个Damkohler标准模型来评估每个含火焰单元的燃烧是通过火焰传播还是通过体积热量释放进行局部控制。 (3)提出了一种改进的“一次放热”计算模型,该模型更精确地考虑了含火焰电池未燃烧区域中的化学动力学放热。 (4)建立了稀薄混合气中火焰淬火过程的模型,最后,(5)开发了一个集成模型,并将其用于模拟汽油涡轮增压直接喷射(GTDI)发动机的燃烧过程。组件(CMC)燃料蒸发模型与改进的燃烧子模型集成在一起。但是,当前的连续多组分燃料模型在均值和二阶矩输运方程中考虑了化学作用产生的源项,并且比忽略这种耦合的先前模型更准确。提出了一种“ PRF自适应”方法,该方法建立了燃油蒸气混合物PRF数量与燃油蒸气混合物组成之间的关系。离散多组分(DMC)燃油蒸发模型形式化与改进的燃烧子模型相结合。在集成中,引入了混合十六烷值方法,其中十六烷值被假定为组件的十六烷值的线性组合。;开发了新的DCMC燃料汽化模型,并将其实现为多维CFD代码。在该模型中,将真实烃燃料中的每个烃族建模为分子量的PDF函数,因此DCMC模型可以成功地区分分子量相似的不同烃族中组分的蒸发。使用DCMC模型揭示了现实燃料汽化的一些新功能。

著录项

  • 作者

    Yang, Shiyou.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 237 p.
  • 总页数 237
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号