首页> 外文学位 >Process Development for Expansion of Human Mesenchymal Stem Cells (hMSCs) using Three Dimensional (3D) Constructs in Novel Perfusion Bioreactors
【24h】

Process Development for Expansion of Human Mesenchymal Stem Cells (hMSCs) using Three Dimensional (3D) Constructs in Novel Perfusion Bioreactors

机译:在新型灌注生物反应器中使用三维(3D)构建体扩增人间充质干细胞(hMSC)的工艺开发

获取原文
获取原文并翻译 | 示例

摘要

Engineered tissue are at the cusp of a healthcare revolution in terms of their potential ability to regenerate damaged/lost tissue and organs. A key raw material for these products are the living cells, often required in the millions to billions of quantities for necessary function and replacement. This research focuses on the process development for the expansion of adherent cells, particularly adipose derived mesenchymal stem cells to meet the above demand. Two strategies were studied. In the first method, the therapeutic cells were encapsulated in 3D microgels produced through an electrostatic deposition process. In the second method, the adherent cells were attached to the surface of 3D printed polystyrene scaffolds inside novel perfusion bioreactors. Both these methods leverage the three-dimensional surface offered by the micro-environment, a significant advantage over standard 2D flat culture flasks in use today. Integration of the 3D printed porous scaffolds embedded within perfusion bioreactors were evaluated towards aiding the process of cell expansion and scale-up. This research has also contributed to the design and development of a novel tubeless perfusion bioreactor integrating 3D printed polystyrene scaffolds. The bioreactor was analyzed for critical process parameters and their optimization thereby laying the process development foundation for bioreactor design and operation for any adherent cell type. This research could lead to economically viable processes for adherent cell expansion leading to reduced cost in the manufacturability of Regenerative Medicine (RM) therapy products.
机译:工程组织就其再生受损/丢失的组织和器官的潜在能力而言,正处于医疗保健革命的风口浪尖。这些产品的关键原材料是活细胞,活细胞通常需要数百万至数十亿的数量才能实现必要的功能和更换。这项研究的重点是发展粘附细胞,特别是脂肪来源的间充质干细胞,以满足上述需求的过程。研究了两种策略。在第一种方法中,将治疗细胞封装在通过静电沉积过程产生的3D微凝胶中。在第二种方法中,将贴壁细胞附着在新型灌注生物反应器内部的3D打印聚苯乙烯支架表面。这两种方法都利用了微环境提供的三维表面,这比目前使用的标准2D平面培养瓶具有明显优势。评估嵌入在灌注生物反应器中的3D打印多孔支架的整合,以辅助细胞扩增和放大的过程。这项研究还有助于设计和开发集成了3D打印聚苯乙烯支架的新型无管灌注生物反应器。分析了生物反应器的关键工艺参数及其优化,从而为任何贴壁细胞类型的生物反应器设计和操作奠定了工艺开发基础。这项研究可能会导致粘附细胞扩增的经济可行方法,从而降低再生医学(RM)治疗产品的可制造性成本。

著录项

  • 作者

    Kumar, Arun.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Industrial engineering.;Biomedical engineering.;Chemical engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 197 p.
  • 总页数 197
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号