首页> 外文学位 >Remote Sensing of Clouds for Solar Forecasting Applications
【24h】

Remote Sensing of Clouds for Solar Forecasting Applications

机译:用于太阳预报应用的云的遥感

获取原文
获取原文并翻译 | 示例

摘要

A method for retrieving cloud optical depth (tauc) using a UCSD developed ground- based Sky Imager (USI) is presented. The Radiance Red-Blue Ratio (RRBR) method is motivated from the analysis of simulated images of various tauc produced by a Radiative Transfer Model (RTM). From these images the basic parameters affecting the radiance and RBR of a pixel are identified as the solar zenith angle (SZA), tau c , solar pixel an- gle/scattering angle (SPA), and pixel zenith angle/view angle (PZA). The effects of these parameters are described and the functions for radiance, Ilambda (tau c ,SZA,SPA,PZA) , and the red-blue ratio, RBR(tauc ,SZA,SPA,PZA) , are retrieved from the RTM results. RBR, which is commonly used for cloud detection in sky images, provides non-unique solutions for tau c , where RBR increases with tauc up to about tauc = 1 (depending on other parameters) and then decreases. Therefore, the RRBR algorithm uses the measured Imeaslambda (SPA,PZA) , in addition to RBRmeas (SPA,PZA ) to obtain a unique solution for tauc . The RRBR method is applied to images of liquid water clouds taken by a USI at the Oklahoma Atmospheric Radiation Measurement program (ARM) site over the course of 220 days and compared against measurements from a microwave radiometer (MWR) and output from the Min [ MH96a ] method for overcast skies. tau c values ranged from 0--80 with values over 80 being capped and registered as 80. A tauc RMSE of 2.5 between the Min method [ MH96b ] and the USI are observed. The MWR and USI have an RMSE of 2.2 which is well within the uncertainty of the MWR. The procedure developed here provides a foundation to test and develop other cloud detection algorithms.;Using the RRBR tauc estimate as an input we then explore the potential of using tomographic techniques for 3-D cloud reconstruction. The Algebraic Reconstruction Technique (ART) is applied to optical depth maps from sky images to reconstruct 3-D cloud extinction coefficients. Reconstruction accuracy is explored for different products, including surface irradiance, extinction coefficients and Liquid Water Path, as a function of the number of available sky imagers (SIs) and setup distance. Increasing the number of cameras improves the accuracy of the 3-D reconstruction: For surface irradiance, the error decreases significantly up to four imagers at which point the improvements become marginal while k error continues to decrease with more cameras. The ideal distance between imagers was also explored: For a cloud height of 1 km, increasing distance up to 3 km (the domain length) improved the 3-D reconstruction for surface irradiance, while k error continued to decrease with increasing decrease. An iterative reconstruction technique was also used to improve the results of the ART by minimizing the error between input images and reconstructed simulations. For the best case of a nine imager deployment, the ART and iterative method resulted in 53.4% and 33.6% mean average error (MAE) for the extinction coefficients, respectively.;The tomographic methods were then tested on real world test cases in the Uni- versity of California San Diego's (UCSD) solar testbed. Five UCSD sky imagers (USI) were installed across the testbed based on the best performing distances in simulations. Topographic obstruction is explored as a source of error by analyzing the increased error with obstruction in the field of view of the horizon. As more of the horizon is obstructed the error increases. If at least a field of view of 70° is available for the camera the accuracy is within 2% of the full field of view. Errors caused by stray light are also explored by removing the circumsolar region from images and comparing the cloud reconstruction to a full image. Removing less than 30% of the circumsolar region image and GHI errors were within 0.2% of the full image while errors in k increased 1%. Removing more than 30° around the sun resulted in inaccurate cloud reconstruction. Using four of the five USI a 3D cloud is reconstructed and compared to the fifth camera. The image of the fifth camera (excluded from the reconstruction) was then simulated and found to have a 22.9% error compared to the ground truth.
机译:提出了一种使用UCSD开发的基于地面的Sky Imager(USI)检索云光学深度(tauc)的方法。辐射红蓝比(RRBR)方法是通过分析由辐射传递模型(RTM)产生的各种胶粉的模拟图像而获得的。从这些图像中,可以将影响像素辐射和RBR的基本参数标识为太阳天顶角(SZA),tau c,太阳像素角/散射角(SPA)和像素天顶角/视角(PZA) 。描述了这些参数的效果,并从RTM结果中检索了辐射Ilambda(tau c,SZA,SPA,PZA)和红蓝比RBR(tauc,SZA,SPA,PZA)的函数。 RBR通常用于天空图像中的云检测,它为tauc提供了非唯一的解决方案,其中RBR随着tauc的增加而增加,直到tauc = 1(取决于其他参数),然后降低。因此,除了RBRmeas(SPA,PZA)以外,R​​RBR算法还使用测得的Imeaslambda(SPA,PZA)获得针对tauc的唯一解决方案。 RRBR方法应用于USI在俄克拉荷马州大气辐射测量计划(ARM)站点在220天的过程中拍摄的液态水云的图像,并将其与微波辐射计(MWR)的测量结果和Min [MH96a ]方法用于阴天。 tau c值范围从0--80,超过80的值被设置为上限并注册为80。在Min方法[MH96b]和USI之间,tauc RMSE为2.5。 MWR和USI的RMSE为2.2,完全在MWR的不确定性之内。这里开发的程序为测试和开发其他云检测算法提供了基础。使用RRBR tauc估计作为输入,然后我们探索使用断层摄影技术进行3-D云重建的潜力。将代数重建技术(ART)应用于来自天空图像的光学深度图,以重建3-D云的消光系数。探索了不同产品的重建精度,包括表面辐照度,消光系数和液态水路径,取决于可用的天空成像仪(SI)数量和安装距离的函数。照相机数量的增加提高了3D重建的精度:对于表面辐照度,最多四个成像仪的误差显着降低,这时,改善幅度不大,而随着更多照相机的使用,k误差继续减小。还探索了成像器之间的理想距离:对于1 km的云高,增加3 km(域长度)的距离可以改善表面辐照度的3-D重建,而k误差会随着减小而不断减小。通过最小化输入图像和重建模拟之间的误差,迭代重建技术还用于改善ART的结果。对于九个成像器部署的最佳情况,ART和迭代方法分别得出消光系数的53.4%和33.6%的平均平均误差(MAE);然后在Uni中对真实世界的测试案​​例进行了层析成像方法的测试-加州圣地亚哥(UCSD)太阳测试台的多功能性。根据模拟中最佳的距离,在测试台上安装了五台UCSD天空成像仪(USI)。通过分析视野范围内因障碍物而增加的误差,可以将地形障碍物视为误差的来源。随着越来越多的视线被遮挡,误差增加。如果摄像机至少有70°的视场,则精度在整个视场的2%以内。还可以通过从图像中去除边缘区域并将云重建与完整图像进行比较来探索由杂散光引起的错误。去除不到30%的睑缘区域图像和GHI误差在整个图像的0.2%以内,而k的误差增加1%。围绕太阳移动超过30°会导致云重建不准确。使用五个USI中的四个,可以重建3D云并与第五个摄像头进行比较。然后模拟了第五个摄像机的图像(不包括在重建中),与地面真实情况相比,发现其误差为22.9%。

著录项

  • 作者

    Mejia, Felipe.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Energy.;Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 101 p.
  • 总页数 101
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号