首页> 外文学位 >A Novel Approach to Measure, Understand, and Assess the Thermal Environment in Grow-Finish Swine Facilities
【24h】

A Novel Approach to Measure, Understand, and Assess the Thermal Environment in Grow-Finish Swine Facilities

机译:生长,完成猪场中热环境的测量,理解和评估的新方法

获取原文
获取原文并翻译 | 示例

摘要

The thermal environment (TE) inside swine production systems substantially affects animal performance as well as facility natural resource usage; hence, our measurement, understanding, and assessment of the TE must be advanced to sustainably meet the animal-protein demand of the growing global population. The TE describes the parameters that influence heat exchange between an animal and its surroundings, with maximum animal performance achieved when minimal thermoregulatory effort is required. Instrumentation and analysis techniques connecting the impact of the TE on total heat loss and subsequently, to animal performance in intensive housing systems are limited. Therefore, the goals of this dissertation research were to create a novel measurement system for quantifying the TE, develop a mechanistic model to understand the interaction between pigs and their TE, and lastly, establish the methodology to assess the TE for improved management strategies. This dissertation describes the design, validation, and implementation of an innovative TE sensor array (TESA) featuring dry-bulb and black globe temperature, airspeed, and relative humidity measurements. A low-cost omnidirectional thermal anemometer was engineered and calibrated with documented measurement uncertainty for reliable airspeed measurements. These measured parameters were needed as inputs to estimate the convective, radiative, and evaporative modes of heat loss in the developed model, which simulated the cascade of behavioral and physiological thermoregulatory responses of group-housed, grow-finish pigs as a function of the TE. Model results were used to generate a new thermal index for assessing different combinations of the TE and predicting the subsequent impact on animal performance. This index was applied to spatially and temporally analyze data collected from a network of 44 TESAs deployed symmetrically in two rooms of a commercial swine facility. TESA adds a new level of measurement precision greatly needed in modern facilities and goes beyond solely measuring dry-bulb temperature. The testing and calibration of TESA demonstrates the functional performance capabilities of the instrument and sets the standard for animal production sensor development. The mechanistic model provides reasonable agreement with previously published results and can be used to inexpensively explore different combinations of the TE on swine performance. Overall, this dissertation will help the swine industry by providing new technology and methods to quantify the impact of TE on performance for improved housing system management and control decisions. This dissertation will advance the corpus of knowledge required to provide food security for the growing global population through economically and sustainably housed pigs.
机译:猪生产系统内部的热环境(TE)会严重影响动物的性能以及设施的自然资源使用。因此,我们必须提高对TE的测量,理解和评估,以可持续地满足日益增长的全球人口对动物蛋白的需求。 TE描述了影响动物与其周围环境之间热交换的参数,并且在需要最小的温度调节作用的情况下可以实现最大的动物性能。在密集的住房系统中,将TE对总热量损失的影响以及随后与动物性能相关的仪器和分析技术受到限制。因此,本论文的研究目的是建立一种新颖的量化TE的测量系统,建立一种机制模型来理解猪及其TE之间的相互作用,最后建立评估TE的方法以改善管理策略。本文介绍了一种创新的TE传感器阵列(TESA)的设计,验证和实现,该阵列具有干球和黑球温度,空速和相对湿度的测量功能。设计了低成本全向热风速计并对其进行了校准,并记录了测量不确定度,以实现可靠的空速测量。需要使用这些测量的参数作为输入来估算开发模型中的热损失的对流,辐射和蒸发模式,该模型模拟了成群饲养的成年猪行为和生理温度调节反应的级联与TE的关系。 。使用模型结果生成新的热指数,以评估TE的不同组合并预测对动物生产性能的后续影响。该指数用于时空分析从对称部署在商业猪场两个房间中的44个TESA的网络收集的数据。 TESA将现代设施中非常需要的测量精度提高到一个新的水平,不仅限于测量干球温度。 TESA的测试和校准证明了该仪器的功能性能,并为动物生产传感器的开发树立了标准。该机理模型与先前发表的结果提供了合理的一致性,可用于廉价地研究TE对猪性能的不同组合。总体而言,本论文将通过提供新技术和方法来量化TE对性能的影响,从而改善住房系统的管理和控制决策,从而对养猪业有所帮助。本论文将通过经济和可持续饲养的猪来提高为不断增长的全球人口提供粮食安全所需的知识库。

著录项

  • 作者

    Ramirez, Brett Carlos.;

  • 作者单位

    Iowa State University.;

  • 授予单位 Iowa State University.;
  • 学科 Agricultural engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 197 p.
  • 总页数 197
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号