首页> 外文学位 >Understanding the Intrinsic Electrochemistry of Ni-Rich Layered Cathodes
【24h】

Understanding the Intrinsic Electrochemistry of Ni-Rich Layered Cathodes

机译:了解富镍层状阴极的本征电化学

获取原文
获取原文并翻译 | 示例

摘要

The demand for energy is continually increasing overtime and the key to meeting future demand in a sustainable way is with energy storage. Li-ion batteries employing layered transition metal oxide cathodes are one of the most technologically important energy storage technologies. However, current Li-ion batteries are unable to access their full theoretical capacity and suffer from performance limiting degradation over time partially originating from the cathode and partially from the interface with the electrolyte. Understanding the fundamental limitations of layered transition metal oxide cathodes requires a complete understanding of the surface and bulk of the materials in their most delithiated state.;In this thesis, we employ LiNi0.8Co0.15Al 0.05O2 (NCA) as a model system for Ni-rich layered oxide cathodes. Unlike its parent compound, LiCoO2, NCA is capable of high states of delithiation with minimal structural transitions. Furthermore, commercially available NCA has little to no transition metals in the Li layer. X-ray spectroscopies are an ideal tool for studying cathodes at high states of delithiation due their elemental selectivity, range of probing depths, and sensitivity to both chemical and electronic state information. The oxidation state of the transition metals at the surface can be probed via X-ray photoelectron spectroscopy (XPS) while both bulk and surface oxidation states as well as changes in metal oxygen bonding can be probed using X-ray absorption spectroscopy (XAS).;Using X-ray spectroscopy in tandem with electrochemical, transport and microscopy measurements of the same materials, the impedance growth with increasing delithiation was correlated with the formation of a disordered NiO phase on the surface of NCA which was precipitated by the release of oxygen. Furthermore, the surface degradation was strongly impacted by the type of Li salt used in the electrolyte, with the standard commercial salt LiPF6 suffering from exothermic decomposition at high voltages and temperatures. Substituting LiPF6with LiBF4 suppressed NCA surface degradation and the dissolution of the transition metals into the electrolyte which is responsible for the impedance growth. Even in the most extreme conditions (4.75V vs Li +/Li0 at 60 °C for > 100 hrs) the degradation (i.e. metal reduction) was restricted to the first 10-30 nm and no evidence of oxygen loss was observed in the bulk.;However, the transition metal ions were found to cease oxidizing above 4.25 V vs Li+/Li0 despite it being possible to extract 20% more lithium. Using a newly developed high efficiency resonant inelastic x-ray scattering (RIXS) spectrometer to probe the O K-edge of NCA electrodes at various conditions, it was concluded that oxygen participates in the charge compensation at the highest states of delithiation instead of the transition metals. These results are intrinsic to the physical and electronic structure of NCA and appear general to the other layered transition metal oxides currently under consideration for use as cathodes in Li-ion batteries.
机译:能源需求随着加班时间的增加而不断增加,以可持续的方式满足未来需求的关键是储能。采用分层过渡金属氧化物阴极的锂离子电池是技术上最重要的能量存储技术之一。然而,当前的锂离子电池无法利用其全部理论容量,并且受性能限制,其随着时间的流逝部分地源自阴极并且部分地源自与电解质的界面。要了解层状过渡金属氧化物阴极的基本局限性,需要对材料的表面和主体处于最脱锂状态的情况有一个完整的了解。本文采用LiNi0.8Co0.15Al 0.05O2(NCA)作为模型系统富镍层状氧化物阴极。与它的母体化合物LiCoO2不同,NCA能够以最小的结构转变实现高脱锂状态。此外,可商购的NCA在Li层中几乎没有过渡金属。 X射线光谱学是研究处于高脱锂状态的阴极的理想工具,因为它们的元素选择性,探测深度范围以及对化学和电子状态信息的敏感性。可以通过X射线光电子能谱(XPS)探测表面上过渡金属的氧化态,而可以使用X射线吸收光谱(XAS)探测体态和表面氧化态以及金属氧键的变化。 ;使用X射线光谱法对相同材料进行电化学,传输和显微镜测量,发现随着去磁作用的增加,阻抗的增长与NCA表面无序NiO相的形成有关,而NiO相是由氧气的释放而沉淀的。此外,电解质中使用的锂盐的类型对表面的降解影响很大,标准的商品盐LiPF6在高压和高温下会放热分解。用LiBF4代替LiPF6可以抑制NCA表面降解以及过渡金属溶解到电解质中,这是导致阻抗增长的原因。即使在最极端的条件下(4.75V vs Li + / Li0在60°C下持续100小时以上),降解(即金属还原)也被限制在最初的10-30 nm,并且没有观察到大量氧气损失的迹象。然而,发现过渡金属离子在相对于Li + / Li 0高于4.25V时停止氧化,尽管有可能再提取20%的锂。使用新开发的高效共振非弹性X射线散射(RIXS)光谱仪在各种条件下探测NCA电极的O K边缘,可以得出结论,氧以最高的脱锂状态而不是过渡态参与电荷补偿。金属。这些结果是NCA的物理和电子结构所固有的,并且对于当前正在考虑用作锂离子电池阴极的其他层状过渡金属氧化物而言,似乎是通用的。

著录项

  • 作者

    Sallis, Shawn.;

  • 作者单位

    State University of New York at Binghamton.;

  • 授予单位 State University of New York at Binghamton.;
  • 学科 Materials science.;Engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 123 p.
  • 总页数 123
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 水产、渔业;
  • 关键词

  • 入库时间 2022-08-17 11:38:53

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号