首页> 外文学位 >Targeted Modification of Neutron Energy Spectra for National Security Applications
【24h】

Targeted Modification of Neutron Energy Spectra for National Security Applications

机译:针对国家安全应用的中子能谱的目标修改

获取原文
获取原文并翻译 | 示例

摘要

At its core, research represents an attempt to break from the "this is the way we have always done it" paradigm. This idea is evidenced from the start in this research effort by the problem formulation to develop a new way to generate synthetic debris that mimics the samples that would be collected for forensics purposes following a nuclear weapon attack on the U.S. or its allies. The philosophy is also demonstrated by the design methodology used to solve the synthetic debris problem, using methods not commonly applied to nuclear engineering problems. Through this research, the bounds of what is deemed possible in neutron spectral shaping are moved ever so slightly.;A capability for the production of synthetic debris and fission products was developed for the National Ignition Facility (NIF). Synthetic debris has historically been made in a limited fashion using sample doping techniques since the cessation of nuclear weapons testing, but a more robust alternative approach using neutron spectral shaping was proposed and developed by the University of California-Berkeley and Lawrence Livermore National Laboratory (LLNL). Using NIF as a starting source spectrum, the energy tuning assembly (ETA) developed in this work can irradiate samples with a combined thermonuclear and prompt fission neutron spectrum (TN+PFNS). When used with fissile foils, this irradiation will produce a synthetic fission product distribution that is realistic across all mass chains.;To design the ETA, traditional parametric point design approaches were discarded in favor of formal optimization techniques. Finding a lack of suitable algorithms in the literature, a metaheuristic-based optimization algorithm, Gnowee, was developed for rapid convergence to nearly globally optimum solutions for complex, constrained engineering problems with mixed-integer and combinatorial design vectors and high-cost, noisy, discontinuous, black box objective function evaluations. Comparisons between Gnowee and several well-established metaheuristic algorithms are made for a set of continuous, mixed-integer, and combinatorial benchmarks. These results demonstrated Gnoweee to have superior flexibility and convergence characteristics over a wide range of design spaces.;The Gnowee algorithm was implemented in Coeus, a new piece of software, to perform optimization of design problems requiring radiation transport for the evaluation of their objective functions. Currently, Coeus solves ETA optimization problems using hybrid radiation transport (ADVANTG and MCNP) to assess design permutations developed by Gnowee. Future enhancements of Coeus will look to expand the geometries and objective functions considered to those beyond ETA design.;Coeus was used to generate an ETA design for the TN+PFNS application on NIF. The design achieved a reasonable match with the objective TN+PFNS and associated fission product distributions within the size and weight constraints imposed by the NIF facility. The ETA design was built by American Elements, and initial validation tests were conducted at the Lawrence Berkeley National Laboratory's 88-Inch Cyclotron. These experiments used foil activation and pulse height spectroscopy to measure the ETA-modified spectrum. Additionally, pulse height spectroscopy measurements were taken as the ETA was built-up component-by-component to measure the impact of nuclear data on the ability to model the ETA performance. Some initial analysis of these results is included here.;Finally, an integral validation experiment on NIF was proposed using the Coeus generated ETA design. A scoping study conducted by LLNL determined the proposed experiment and ETA design are within NIF facility limitations and current radio-chemistry capabilities. The study found that the proposed ETA experiment was "low risk," has "no show stoppers," and has a "reasonable cost." All that is needed is a sponsor to close the last funding gap and bring the experiment to fruition.;This research broke with the current sample doping approach and applied neutron spectral shaping to design an ETA that can create realistic synthetic fission and activation products and improve technical nuclear forensics outcomes. However, the ETA presented in this research represents more than a stand alone point design with a limited scope and application. It is proof of a concept and the product of a unique capability that has a wide range of potential applications.;This research demonstrates that the concept of neutron spectral shaping can be used to engineer complex neutron spectra within the confines of physics. There are many possible applications that could benefit from the ability to generate custom energy neutron spectra that fall outside of current sources and methods. The ETA is the product of a general-purpose optimization algorithm, Gnowee, and design framework, Coeus, which enables the use of Gnowee for complex nuclear design problems. Through Gnowee and Coeus, new ETA neutronics designs can be generated in days, not months or years, with a drastic reduction in the research effort required to do so. (Abstract shortened by ProQuest.).
机译:从本质上讲,研究代表了一种尝试突破“这就是我们一直以来做到的方式”范式的尝试。这个想法从研究工作的开始就可以通过问题的制定来证明,该问题的制定开发了一种新的方式来产生合成碎片,该碎片模拟了在美国或其盟国遭到核武器袭击后将用于法医目的收集的样本。通过不常用核工程问题的方法来解决合成碎片问题的设计方法论也证明了这一理念。通过这项研究,中子光谱整形中可能发生的边界移动得如此之小。国家点火装置(NIF)开发了生产合成碎片和裂变产物的能力。自从停止核武器测试以来,历史上就一直使用样品掺杂技术以有限的方式制造合成碎片,但是加利福尼亚大学伯克利分校和劳伦斯·利弗莫尔国家实验室(LLNL)提出并开发了一种使用中子谱整形的更强大的替代方法。 )。使用NIF作为起始源光谱,在这项工作中开发的能量调谐组件(ETA)可以用热核和瞬变裂变中子光谱(TN + PFNS)组合照射样品。当与易裂变箔片一起使用时,这种辐照将产生在所有质量链上都真实的合成裂变产物分布。由于文献中缺乏合适的算法,因此开发了基于元启发式的优化算法Gnowee,以快速收敛到混合整数和组合设计矢量以及高成本,高噪声,复杂,受约束的工程问题的几乎全局最优的解决方案。不连续的黑匣子目标函数评估。针对一组连续,混合整数和组合基准,对Gnowee和几种公认的元启发式算法进行了比较。这些结果表明Gnoweee在广泛的设计空间中具有出色的灵活性和收敛性。; Gnowee算法在新软件Coeus中实现,可以优化需要辐射传输的设计问题,以评估其目标功能。 。目前,Coeus使用混合辐射传输(ADVANTG和MCNP)解决了ETA优化问题,以评估Gnowee开发的设计排列。 Coeus的未来增强功能将把几何形状和目标函数扩展到ETA设计以外的范围。; Coeus用于为NIF上的TN + PFNS应用程序生成ETA设计。该设计在NIF设施施加的尺寸和重量限制内,与目标TN + PFNS和相关裂变产物分布合理地匹配。 ETA设计是由American Elements建造的,最初的验证测试是在劳伦斯伯克利国家实验室的88英寸回旋加速器上进行的。这些实验使用箔活化和脉冲高度光谱法来测量ETA修饰的光谱。另外,随着ETA逐个组件的建立,进行了脉冲高度光谱测量,以测量核数据对ETA性能建模能力的影响。最后,对这些结果进行了一些初步分析。最后,使用Coeus生成的ETA设计对NIF进行了整体验证实验。 LLNL进行的范围界定研究确定拟议的实验和ETA设计在NIF设施限制和当前的放射化学能力范围内。研究发现,拟议的ETA实验“风险低”,“没有障碍”,并且具有“合理的成本”。所需要的只是一个资助者,以弥合最后一个资金缺口,并使该实验得以实现。该研究打破了当前的样品掺杂方法,并应用中子谱整形技术设计了一种ETA,该ETA可以创造出真实的合成裂变和活化产物并改善技术核取证结果。但是,本研究中提出的ETA不仅限于范围和应用范围有限的独立点设计。这是一个概念的证明,并且是具有广泛潜在应用的独特功能的产物。该研究表明,中子谱整形的概念可用于在物理范围内设计复杂的中子谱。产生自定义能量中子谱的能力可能会受益于许多可能的应用,而这些能量中子谱属于当前的来源和方法之外。 ETA是通用优化算法Gnowee和设计框架Coeus的产物,该算法使Gnowee可以用于复杂的核设计问题。通过Gnowee和Coeus,新的ETA中子学设计可以在几天而不是数月或数年内生成,从而大大减少了所需的研究工作。 (摘要由ProQuest缩短。)。

著录项

  • 作者

    Bevins, James Edward.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Nuclear engineering.;Nuclear physics and radiation.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 217 p.
  • 总页数 217
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号