首页> 外文学位 >Design, characterizaion and fabrication of neodymium doping profiles in transparent YAG ceramics.
【24h】

Design, characterizaion and fabrication of neodymium doping profiles in transparent YAG ceramics.

机译:透明YAG陶瓷中钕掺杂轮廓的设计,表征和制造。

获取原文
获取原文并翻译 | 示例

摘要

Transparent laser ceramics offer significant fabrication advantages over traditional cubic-oxide single-crystal fabrication techniques, such as reduced processing time, scaling to large aperture sizes and reduced fabrication temperatures. Ceramic fabrication also allows a convenient route to engineering spatially-varying rare-earth doping profiles by creating a composition profile in the green-ceramic state. Optimized doping profiles have the potential to simultaneously improve diode-pumped laser efficiency and beam quality.; The ability to arbitrarily engineer the doping profile of laser media opens a very large design space. The process of optimizing the doping profile for improved performance is dependent on the laser geometry (i.e., slab, rod, thin-disk, etc.) and is complicated by the change in thermal conductivity and refractive index of the host with doping level. In addition, spatially varying the rare-earth-ion concentration changes the distribution of thermal load within the gain medium. Without careful consideration, temperature-induced distortions will greatly reduce beam quality. To balance the multiple profile design constraints, a genetic algorithm was used to optimize the power delivered into diffraction-limited spot in the far field. The gain medium was composed of an Nd:Y3Al5O12 (Nd:YAG) zig-zag slab amplifier, edge pumped with 10 kW of diode pump power at 807.5 nm. The resulting doping profile is predicted to increase the power extracted from the laser and delivered into the far field by over 39% compared to the uniformly doped laser media that can be fabricated today.; A simple Nd:YAG-core, YAG-clad planar waveguide structure was also fabricated. For the first time, laser oscillation was demonstrated in a 500-mum-wide doping profile fabricated directly from a green ceramic. However, the use of a reactive sintering method (Al2O3 and Y2O 3 reacted to produce Y3Al5O12 during sintering) to fabricate this structure is shown to transport significant amounts of Nd through the grain boundaries, which greatly distorts the initial profile. Current ceramic fabrication techniques can reliably make large doping profiles, such as the profile outlined above. However, to create practically useful waveguides directly from green ceramics, a new material system or a significant reduction in fabrication temperatures is required.
机译:与传统的立方氧化物单晶制造技术相比,透明激光陶瓷具有显着的制造优势,例如减少了处理时间,缩小到大孔径尺寸并降低了制造温度。陶瓷制造还通过在绿陶瓷状态下创建成分分布图,为工程化空间变化的稀土掺杂分布图提供了一条便捷的途径。优化的掺杂分布有可能同时提高二极管泵浦的激光效率和光束质量。任意设计激光介质的掺杂轮廓的能力开辟了很大的设计空间。优化掺杂分布以提高性能的过程取决于激光器的几何形状(即平板,棒,薄盘等),并且随着掺杂水平的主体的导热率和折射率的变化而变得复杂。另外,在空间上改变稀土离子浓度会改变增益介质内的热负荷分布。如果不仔细考虑,温度引起的失真将大大降低光束质量。为了平衡多个轮廓设计约束,使用遗传算法优化了传递到远场中衍射极限光斑的功率。增益介质由Nd:Y3Al5O12(Nd:YAG)之字形平板放大器组成,其边缘以807.5 nm的二极管功率泵浦10 kW。与目前可以制造的均匀掺杂的激光介质相比,预计得到的掺杂轮廓将使从激光器提取并传输到远场的功率增加39%以上。还制造了一种简单的Nd:YAG芯,YAG包覆的平面波导结构。首次在直接由绿色陶瓷制成的500微米宽的掺杂轮廓中演示了激光振荡。但是,使用反应性烧结方法(在烧结过程中,Al2O3和Y2O3反应生成Y3Al5O12)来制造这种结构,表明该方法可通过晶粒边界传输大量Nd,这会极大地扭曲初始轮廓。当前的陶瓷制造技术可以可靠地制造大的掺杂轮廓,例如上面概述的轮廓。然而,为了直接由生陶瓷制造出实用的波导,需要一种新的材料系统或大大降低制造温度。

著录项

  • 作者

    Wisdom, Jeffrey Alan.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Physics Optics.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 132 p.
  • 总页数 132
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 光学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号