首页> 外文学位 >The thin film structure and charge transport mobility of pyrene-based and thiophene organic semiconductors.
【24h】

The thin film structure and charge transport mobility of pyrene-based and thiophene organic semiconductors.

机译:pyr基和噻吩有机半导体的薄膜结构和电荷迁移率。

获取原文
获取原文并翻译 | 示例

摘要

Future development of organic semiconductors requires understanding of the primary chemical structure and processing conditions and how they relate to the thin film microstructure and the final organic field effect transistor (OFET) performance. Establishing these relationships is a necessary step towards controlling thin film crystallization processes to realize greater carrier mobility and more facile processing methods. Probing the thin film crystal structures of complex organic molecules is challenging because they often form unit cells with complex spatial and orientational arrangements of their chemical moieties. Developing complete structure models for more complex molecules requires multiple, complementary measurements.;Using a unique characterization approach, the thin film crystal structure of small molecule organic semiconductor 6,7,15,16-tetrakis(alkylthio)-quinoxalino[2',3',9,10]-phenanthro[4,5-abc]phenazine (TQPP-[SR]4) was determined using a combination of polarized photon absorption spectroscopies (X-ray, vis, and infrared), X-ray diffraction, and scanning probe techniques. The combined techniques allowed the determination of crystal order and local molecular orientation within thin films. The TQPP-[SR]4 core orientation changes dramatically depending on the length of its side chains. Longer side chains enforce a core orientation with greater potential for pi-overlap in the source-drain plane of OFETs. Surprisingly, TQPP-SC8H17 exhibits room temperature polymorphism, where the core packing motif changes after thermal treatment. The thin film microstructure and core packing styles appear to directly correlate with variations in OFET performance; packing styles with improved pi-overlap and larger lateral domain size exhibit greater field effect carrier mobility.
机译:有机半导体的未来发展需要了解主要的化学结构和加工条件,以及它们与薄膜微结构和最终的有机场效应晶体管(OFET)性能之间的关系。建立这些关系是控制薄膜结晶过程以实现更大的载流子迁移率和更简便的处理方法的必要步骤。探测复杂有机分子的薄膜晶体结构具有挑战性,因为它们通常形成具有化学部分复杂的空间和方向排列的晶胞。为更复杂的分子开发完整的结构模型需要多次互补的测量。;使用独特的表征方法,小分子有机半导体6,7,15,16-四(烷硫基)-喹喔啉[2',3]的薄膜晶体结构使用偏振光子吸收光谱(X射线,可见光和红外),X射线衍射,和扫描探针技术。组合技术可以确定薄膜中的晶体顺序和局部分子取向。 TQPP- [SR] 4的核取向取决于其侧链的长度而发生巨大变化。较长的侧链会在OFET的源极-漏极平面中强制进行核心定向,从而具有更大的pi重叠潜力。出乎意料的是,TQPP-SC8H17表现出室温多态性,在热处理后,其芯堆积图案发生变化。薄膜的微观结构和堆芯方式似乎与OFET性能的变化直接相关。具有改进的pi重叠和更大的横向畴尺寸的堆积形式表现出更大的场效应载流子迁移率。

著录项

  • 作者

    Lucas, Leah A.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 129 p.
  • 总页数 129
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号