首页> 外文学位 >Combustion and heat transfer in meso-scale heat recirculating combustors.
【24h】

Combustion and heat transfer in meso-scale heat recirculating combustors.

机译:中规模热循环燃烧器中的燃烧和热传递。

获取原文
获取原文并翻译 | 示例

摘要

Combustion in small-scale systems faces problems related to time available for chemical reaction to go to completion and the possible quenching of the reaction by the increased effects of interfacial phenomena (thermal quenching and radical quenching) that occur at the combustor walls due to higher surface to volume ratio. Heat recirculation, where in a portion of the energy from the products is fed back to the reactants through structural conduction is one of the strategies employed in meso-scale combustors to overcome the problems of thermal quenching of the flame. When liquid fuels are employed, structural conduction can help pre-vaporize the fuel and thereby removes the necessity for a fuel atomizer. This dissertation focuses on the design, development and operational characteristics of meso-scale combustors employing heat recirculation principle. Self-sustained combustion of propane-air and methanol-air flames were achieved in sub centimeter dimensions (32.6 mm3). The effects of design and operational parameters like wall thermal conductivity, heat exchanger size/channel length, combustion chamber geometry, equivalence ratio, Reynolds number, and external heat transfer (loss) coefficient on the combustor performance were investigated experimentally and numerically. The experimental procedure involved fabrication of combustors with different geometric features employing materials of different thermal conductivities and then obtaining their operating limits. Thermal performance with respect to various flow conditions was obtained by measuring the reactant preheating and exhaust gas temperatures using thermocouples. Numerical simulations were performed for both reacting and non-reacting flow cases to understand the heat transfer characteristics with respect to various design and operational conditions. Both experiments and numerical simulations revealed that wall thermal conductivity is one of the most important parameters for meso-scale combustor design. For typical meso-scale dimensions wall materials with minimal thermal conductivity ( 1W/m-K), especially ceramics would yield the best performance. Results showed that the most thermally efficient operating condition occurs for fuel lean cases at higher Reynolds numbers. Flame dynamics inside the combustor were investigated through high-speed imaging and flame acoustic spectrum mapping. Due to the small length scales involved, hydrodynamic instabilities have negligible effect on meso-scale combustion. Flame was observed to be extremely stable with negligible fluctuations. However, a significant amount of thermoacoustic phenomena is present within the combustion regime. Chemiluminescence imaging was employed to correctly map the flame zone inside the combustor.
机译:小规模系统中的燃烧面临以下问题:化学反应完成所需的时间以及由于较高表面而在燃烧室壁上发生的界面现象(热猝灭和自由基猝灭)的增加影响,可能使反应猝灭体积比。热循环是中规模燃烧室中用来克服火焰热淬火问题的策略之一,在热循环中,一部分产物的能量通过结构传导反馈给反应物。当使用液体燃料时,结构传导可以帮助燃料预蒸发,从而消除了燃料雾化器的必要性。本文主要研究利用热循环原理的中型燃烧室的设计,开发和运行特性。丙烷-空气和甲醇-空气火焰的自持燃烧达到了亚厘米尺寸(32.6 mm3)。实验和数值研究了设计和运行参数,如壁的导热系数,热交换器的尺寸/通道长度,燃烧室的几何形状,当量比,雷诺数和外部传热(损失)系数对燃烧器性能的影响。实验过程涉及使用具有不同热导率的材料制造具有不同几何特征的燃烧器,然后获得其工作极限。通过使用热电偶测量反应物的预热和废气温度,可以获得各种流动条件下的热性能。对反应和非反应流动情况都进行了数值模拟,以了解各种设计和运行条件下的传热特性。实验和数值模拟均表明,壁热导率是中尺度燃烧器设计的最重要参数之一。对于典型的中尺度尺寸的墙体材料,其导热系数最小(<1W / m-K),尤其是陶瓷,将产生最佳性能。结果表明,最热效率的工况发生在较高雷诺数的稀油情况下。通过高速成像和火焰声谱图研究了燃烧器内部的火焰动力学。由于所涉及的长度尺度小,流体动力不稳定性对中尺度燃烧的影响可忽略不计。观察到火焰非常稳定,波动很小。但是,在燃烧状态中存在大量的热声现象。化学发光成像用于正确绘制燃烧室内部的火焰区域。

著录项

  • 作者

    Vijayan, Vineeth.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 231 p.
  • 总页数 231
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号