首页> 外文学位 >Poly(gamma-benzyl alpha, L glutamic acid)-based piezoelectric films & microfibers.
【24h】

Poly(gamma-benzyl alpha, L glutamic acid)-based piezoelectric films & microfibers.

机译:聚(γ-苄基α,L谷氨酸)基压电薄膜和超细纤维。

获取原文
获取原文并翻译 | 示例

摘要

Piezoelectric materials in use today are often made of ceramic crystals. Although most ceramics offer high piezoelectricity, they are brittle and require expensive processing conditions. For applications where flexibility is required in addition to high piezoelectric activity, polymers are a very attractive alternative.;An ideal piezoelectric material is the one where the piezoelectricity and mechanical properties can be altered individually so that the mechanical stiffness of the material can be varied for particular applications or tuned to match that of the surroundings (e.g. air or water) for increased transduction sensitivity. This is typically achieved by production of composite materials containing piezoelectric and matrix components. Here, we present new composite films and microfibers based on the biopolymer, poly(gamma-benzyl alpha,L-glutamate) (PBLG) and discuss their fabrication and piezoelectric properties.;Fabrication of PBLG films and fibers was made possible by PBLG's extreme solubility in organic solvents. By simultaneous poling and curing of PBLG/methylmethacrylate (MMA) mixture solutions via corona charging, we fabricated a flexible composite film [80% PBLG and 20% Poly(methylmethacrylate) (PMMA)] with approximately 20% of the PBLG molecules oriented normal to the film surface. This PBLG film exhibited high piezoelectricity (d33 = 20 pC/N), and its Young's modulus was 1 GPa. However, significant amount of MMA evaporated during the corona charging process that precluded the fabrication of films with pre-determined PBLG-PMMA composition. We also fabricated thick composite disk (thickness: 3 cm) by breakdown charging and thermal polymerization of PBLG/PMMA mixture solution, a process that does not allow MMA evaporation. The composite disk exhibited low piezoelectricity (d33 ∼ 3 pC/N) due to low PBLG content ( 30%); however, its mechanical characteristics were similar to those of PMMA, indicating that the piezoelectricity and mechanical strength are independently related to the two polymer components of the composite disk. By electrospinning PBLG/dichloromethane (DCM) solutions under potentials of -(12∼15) kV, we produced piezoelectric microfibers (diameter: 100 nm) with nearly all of the PBLG dipoles oriented along the fiber axis, evidenced by x-ray diffraction. The PBLG fibers showed high piezoelectricity (d 33 = 32 pC/N), and an elastic modulus of 570 MPa.;Both the piezoelectric film and fiber systems can be fabricated directly from solution in a mould or on a substrate. Due to the versatility in the fabrication process and the high piezoelectricity, these materials show great promise as transducer materials for loud speakers, microphones, and/or energy harvesting devices.
机译:当今使用的压电材料通常由陶瓷晶体制成。尽管大多数陶瓷提供高压电性,但它们很脆,需要昂贵的加工条件。对于除了高压电活性外还需要柔韧性的应用而言,聚合物是一种非常有吸引力的选择。理想的压电材料是可以单独改变压电性和机械性能从而可以改变材料的机械刚度的材料。特殊应用或进行调整以匹配周围环境(例如空气或水)以提高转导灵敏度。这通常是通过生产包含压电和基质成分的复合材料来实现的。在这里,我们介绍了基于生物聚合物,聚(γ-苄基α,L-谷氨酸)(PBLG)的新型复合薄膜和超细纤维,并讨论了它们的制备和压电性能。; PBLG薄膜和纤维的制造是由于PBLG的极高溶解度而成为可能在有机溶剂中。通过电晕充电同时极化和固化PBLG /甲基丙烯酸甲酯(MMA)混合物溶液,我们制备了柔性复合膜[80%PBLG和20%聚(甲基丙烯酸甲酯)(PMMA)],其中约20%的PBLG分子垂直于薄膜表面。该PBLG膜表现出高压电性(d33 = 20pC / N),杨氏模量为1GPa。然而,在电晕充电过程中大量的MMA蒸发,这使得无法制造具有预定PBLG-PMMA组成的薄膜。我们还通过对PBLG / PMMA混合溶液进行击穿充电和热聚合来制造厚的复合圆盘(厚度:3 cm),该过程不允许MMA蒸发。复合盘由于PBLG含量低(<30%)而显示出低压电性(d33〜3 pC / N)。然而,它的机械特性与PMMA相似,表明压电性和机械强度与复合材料圆盘的两种聚合物成分独立相关。通过在-(12-15)kV的电势下静电纺丝PBLG /二氯甲烷(DCM)溶液,我们生产了压电微纤维(直径:100 nm),其中几乎所有PBLG偶极子都沿着纤维轴取向,这是通过X射线衍射证明的。 PBLG纤维显示出高压电性(d 33 = 32 pC / N),弹性模量为570 MPa。压电膜和纤维体系均可直接由模具中或基板上的溶液制成。由于制造过程的多功能性和高压电性,这些材料作为扬声器,麦克风和/或能量收集设备的换能器材料具有广阔的前景。

著录项

  • 作者

    Farrar, Dawnielle.;

  • 作者单位

    The Johns Hopkins University.;

  • 授予单位 The Johns Hopkins University.;
  • 学科 Engineering Electronics and Electrical.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 98 p.
  • 总页数 98
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号