首页> 外文学位 >Remote Sensing and Modeling of Stressed Aquifer Systems and the Associated Hazards
【24h】

Remote Sensing and Modeling of Stressed Aquifer Systems and the Associated Hazards

机译:承压含水层系统的遥感与建模及相关危害

获取原文
获取原文并翻译 | 示例

摘要

Aquifers host the largest accessible freshwater resource in the world. However, groundwater reserves are declining in many places. Often coincident with drought, high extraction rates and inadequate replenishment result in groundwater overdraft and permanent land subsidence. Land subsidence is the cause of aquifer storage capacity reduction, altered topographic gradients which can exacerbate floods, and differential displacement that can lead to earth fissures and infrastructure damage. Improving understanding of the sources and mechanisms driving aquifer deformation is important for resource management planning and hazard mitigation.;Poroelastic theory describes the coupling of differential stress, strain, and pore pressure, which are modulated by material properties. To model these relationships, displacement time series are estimated via satellite interferometry and hydraulic head levels from observation wells provide an in-situ dataset. In combination, the deconstruction and isolation of selected time-frequency components allow for estimating aquifer parameters, including the elastic and inelastic storage coefficients, compaction time constants, and vertical hydraulic conductivity. Together these parameters describe the storage response of an aquifer system to changes in hydraulic head and surface elevation. Understanding aquifer parameters is useful for the ongoing management of groundwater resources.;Case studies in Phoenix and Tucson, Arizona, focus on land subsidence from groundwater withdrawal as well as distinct responses to artificial recharge efforts. In Christchurch, New Zealand, possible changes to aquifer properties due to earthquakes are investigated. In Houston, Texas, flood severity during Hurricane Harvey is linked to subsidence, which modifies base flood elevations and topographic gradients.
机译:含水层拥有世界上最大的可利用淡水资源。但是,许多地方的地下水储量正在下降。通常与干旱,高提取率和补给不足共同导致地下水透支和永久性地面沉降。地面沉降是造成含水层储存能力下降,改变地形坡度(可能加剧洪灾)以及造成土地裂隙和基础设施损坏的差异位移的原因。增进对驱动含水层变形的来源和机理的理解对于资源管理计划和减轻危害非常重要。孔隙弹性理论描述了压应力,应变和孔隙压力的耦合,这些耦合受材料特性的调节。为了建立这些关系的模型,通过卫星干涉测量法估算位移时间序列,并从观测井中获得水位,以提供现场数据集。结合起来,对选定的时频分量进行解构和隔离可以估计含水层参数,包括弹性和非弹性存储系数,压实时间常数和垂直水力传导率。这些参数共同描述了含水层系统对水头和地面高度变化的存储响应。了解含水层参数对于正在进行的地下水资源管理很有用。亚利桑那州凤凰城和图森的案例研究着重于地下水开采引起的地面沉降以及对人工补给努力的不同反应。在新西兰基督城,调查了地震引起的含水层性质可能发生的变化。在得克萨斯州休斯顿,飓风“哈维”期间的洪水严重程度与沉降有关,沉降会改变基础洪水高程和地形梯度。

著录项

  • 作者

    Miller, Megan Marie.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Geographic information science and geodesy.;Hydrologic sciences.;Geophysics.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 169 p.
  • 总页数 169
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号