首页> 外文学位 >Towards renewable commodity chemicals: Biosynthesis of phloroglucinol and chemoenzymatic synthesis of caprolactam.
【24h】

Towards renewable commodity chemicals: Biosynthesis of phloroglucinol and chemoenzymatic synthesis of caprolactam.

机译:迈向可再生商品化学品:间苯三酚的生物合成和己内酰胺的化学酶法合成。

获取原文
获取原文并翻译 | 示例

摘要

In rise of the uncertainty associated with the chemical industries reliance on non-renewable resources for virtually all commodity chemical manufacture, the research for sources with renewable feedstocks are of importance. The following research comprises of chemistry which progresses towards the deviation from a petroleum-based chemical economy, to one that thrives on starting materials from renewable sources through utilization of rapid and efficient syntheses dependent upon microbial biocatalysts. Efforts aimed to biocatalytically produce 1,3,5-trihydroxybenzene and an epsilon-caprolactam precursor from renewable resources at a level with commercial importance. To enhance the viability of commercial manufacture, following a successful biocatalytic production, efforts focused on delivering chemicals with the same level and purity to compete with nonrenewable routes.;epsilon-Caprolactam, the monomer for nylon 6, was synthesized from L-beta-lysine. As a renewable feedstock, D-glucose derived L-lysine had been shown to cyclize and deaminate to form epsilon-caprolactam in previous works. Alternatively, L-beta-lysine was researched for applicability in an analogous synthesis of epsilon-caprolactam. Under anaerobic conditions, Clostridium subterminale SB4 degrades L-lysine as a carbon source with two initial metabolic, amino group isomerizations, to L-beta-lysine and then 3,5-diaminohexanoate. Successful, selective inhibition of the second aminomutase enzyme was achieved through intense irradiation with light, providing an in vivo microbial synthesis of L-beta-lysine. The resulting biosynthetic L-beta-lysine product, ultimately from renewable D-glucose, was cyclized to beta-aminocaprolactam in near quantitative yields by reflux in high temperature alcohols. Hydrodenitrogenation of beta-aminocaprolactam to epsilon-caprolactam was achieved only in trace amounts.;Phloroglucinol's vast synthetic utility is overshadowed by the problematic synthesis, which precludes its use in commodity chemical markets. Phloroglucinol in vivo biocatalysis, from D-glucose, had been shown previously by heterologous expression of phloroglucinol synthase (Type III polyketide synthase, phlD) from Pseudomonas fluorescens Pf-5 in Escherichia coli. Microbial synthesis of phloroglucinol in a controlled fermentation vessel was increased to concentrations approaching 5 g/L at 6% yield (mol phloroglucinol/mol D-glucose) in fed-batch mode with a 1 L working volume scale. Phloroglucinol toxicity is contributive to limited production, leading to an engineered continuous-extractive, two stage microbial synthesis that afforded concentrations up to 38 g/L at 12% yield (mol phloroglucinol/mol D-glucose). Besides continuous extraction to alleviate toxicity issues, transcriptome analysis was another avenue of research. Upregulated genes by transcriptome analysis, along side probable E. coli export machinery, were researched and manipulated in hopes of generating a phloroglucinol tolerant host, to no avail. Genetic advancement of the Pseudomonas fluorescens Pf-5 phlD gene through codon optimization increased the crude lysate specific activity, from malonyl CoA to phloroglucinol, two-fold to 0.045 mumol phloroglucinol/min/mg protein. Downstream purification of biocatalytically produced, phloroglucinol had recovery rates of 91% from production to bottled chemical, that was independently certified to be 99.6% pure.
机译:随着化学工业对几乎所有商品化学制造依赖不可再生资源的相关不确定性的上升,对具有可再生原料的来源的研究非常重要。以下研究包括化学,该化学朝着脱离石油基化学经济的方向发展,逐渐发展为通过利用依赖于微生物生物催化剂的快速有效合成方法,从可再生资源中获取原材料的方法。旨在从可再生资源中以具有商业重要性的水平生物催化生产1,3,5-三羟基苯和ε-己内酰胺前体的努力。为了提高商业生产的可行性,在成功进行生物催化生产之后,努力集中于提供相同水平和纯度的化学品,以与不可再生的途径竞争。;ε-己内酰胺,尼龙6的单体,是由L-β-赖氨酸合成的。作为一种可再生原料,D-葡萄糖衍生的L-赖氨酸在先前的研究中已显示出环化和脱氨基作用,形成ε-己内酰胺。或者,研究了L-β-赖氨酸在ε-己内酰胺的类似合成中的适用性。在厌氧条件下,梭状芽胞杆菌SB4降解L-赖氨酸作为碳源,具有两个初始代谢氨基异构化成L-β-赖氨酸,然后变为3,5-二氨基己酸。通过强烈的光照,成功,选择性地抑制了第二种氨基变位酶,从而提供了L-β-赖氨酸的体内微生物合成。最终来自可再生D-葡萄糖的生物合成L-β-赖氨酸产物通过在高温醇中回流,以接近定量的产率环化为β-氨基己内酰胺。 β-氨基己内酰胺加氢脱氮为ε-己内酰胺仅能实现微量。间苯三酚的广泛合成用途被有问题的合成所掩盖,这使其无法在商品化学品市场中使用。先前已经通过在大肠杆菌中异源表达荧光假单胞菌Pf-5的间苯三酚合酶(III型聚酮化合物合酶,phlD)显示了来自D-葡萄糖的间苯三酚体内生物催化。在受控的发酵容器中,以1 L的工作量规模,以6%的收率(间苯三酚/ mol D-葡萄糖)以6%的收率(间苯三酚/ mol D-葡萄糖)将间苯三酚的微生物合成浓度提高至接近5 g / L。间苯三酚的毒性有助于有限的生产,导致工程化的连续提取的两阶段微生物合成,以12%的产率提供最高38 g / L的浓度(间苯三酚/ mol D-葡萄糖)。除了连续提取以减轻毒性问题外,转录组分析是另一种研究途径。通过转录组分析以及可能的大肠杆菌输出机制,对上调的基因进行了研究和操作,希望产生对间苯三酚耐受的宿主,但无济于事。通过密码子优化,荧光假单胞菌Pf-5 phlD基因的遗传进展提高了粗裂解物的比活性,从丙二酰辅酶A到间苯三酚,增加到原来的两倍,为0.045微摩尔间苯三酚/ min / mg蛋白。间苯三酚在生物催化生产的下游纯化中,从生产到瓶装化学品的回收率为91%,经独立认证,纯度为99.6%。

著录项

  • 作者

    Cox, Brad M.;

  • 作者单位

    Michigan State University.;

  • 授予单位 Michigan State University.;
  • 学科 Chemistry Organic.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 252 p.
  • 总页数 252
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 有机化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号