首页> 外文学位 >Novel separation technology for high-speed gas chromatography: Theoretical and experimental approaches to separation optimization.
【24h】

Novel separation technology for high-speed gas chromatography: Theoretical and experimental approaches to separation optimization.

机译:高速气相色谱的新型分离技术:分离优化的理论和实验方法。

获取原文
获取原文并翻译 | 示例

摘要

In order to attain a highly efficient high-speed gas chromatography (GC) separations, all experimental/instrumental parameters (i.e., capillary length and inner diameter; stationary phase composition and thickness; carrier gas velocity; oven temperature and temperature programming rate) need to be properly selected and optimized. The optimization of GC separations is vital to reduce the amount of time required for chromatographic analysis down to the time frame of a chemical sensor. This work has taken a dual approach to the optimization of high-speed GC separations through the use of both chromatographic theory and experimental modification/optimization. The novel GC theory developed within this work, as it applies to high-speed separations, can be applied as a means of separation and instrument evaluation. This novel theoretical framework is utilized to demonstrate the advantages, in terms of minimum plate height (Hmin), separation efficiency per unit time (Nopt/tM) and the peak width at the base of theoretical chromatographic peaks (wb opt) , of using short capillary columns with small inner diameters. The novel theoretical framework is revisited throughout this work as a means of evaluation of subsequent experimental optimizations. This work explores the theoretical optimization of the separation column dimensions and carrier gas velocity and the experimental optimization of the separation temperature and stationary phase composition and thickness. Resistive heating of the separation column results in a rapid temperature program capable of solving the general elution problem for high-speed separations, which optimizes the separation temperature. Optimizing the stationary phase composition, through the implementation of highly selective novel materials, is a means of separating a subset of compounds from a larger sample matrix. The combination of a novel stationary phase and resistive heating in the improved microfabricated GC (micro-GC) chip results in a chip capable of separating a mixture of compounds with low energy and carrier gas consumption.
机译:为了获得高效的高速气相色谱(GC)分离,所有实验/仪器参数(即毛细管长度和内径;固定相组成和厚度;载气速度;柱箱温度和温度编程速率)都需要正确选择和优化。 GC分离的优化对于将色谱分析所需的时间减少到化学传感器的时间范围至关重要。这项工作采用了色谱理论和实验改进/优化方法,对高速GC分离进行了优化。在这项工作中开发的新颖的气相色谱理论适用于高速分离,可以用作分离和仪器评估的手段。利用这种新颖的理论框架,可证明使用最小限度色谱柱在最小塔板高度(Hmin),每单位时间分离效率(Nopt / tM)和理论色谱峰底部的峰宽(wb opt)方面的优势内径小的毛细管柱。在整个工作过程中,将重新审视新颖的理论框架,作为评估后续实验优化的一种手段。这项工作探索了分离塔尺寸和载气速度的理论优化,以及分离温度和固定相组成和厚度的实验优化。分离柱的电阻加热产生了快速的温度程序,该程序能够解决高速分离的一般洗脱问题,从而优化了分离温度。通过实施高度选择性的新型材料来优化固定相的组成,是从较大的样品基质中分离出一部分化合物的一种方法。在改进的微型GC(micro-GC)芯片中,新颖的固定相和电阻加热相结合,形成了一种能够分离低能耗和载气的化合物混合物的芯片。

著录项

  • 作者

    Reid, Vanessa Rose.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Chemistry Analytical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 189 p.
  • 总页数 189
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号