首页> 外文学位 >Insights into the Shark 'Holobiont' through the Skin Microbiome and Host Genetics
【24h】

Insights into the Shark 'Holobiont' through the Skin Microbiome and Host Genetics

机译:通过皮肤微生物组和宿主遗传学洞察鲨鱼的“ Holobiont”

获取原文
获取原文并翻译 | 示例

摘要

Eukaryotic organisms are covered by a collection of microbial organisms, termed the microbiome. Emergent properties of the microbiome are associated with the health of their host and fluctuates with changes to microbiome community diversity. Understanding processes of microbiome diversity is a critical question for insight into the health of host organisms. Historically, microbiome insight was gained through limited procedure which provide an incomplete assessment. For example, culture-based microbial assays provide insight into the < 1 % of microbial organism which can be cultured, and gene marker surveys reveal only the taxonomic composition of the microbiome. The microbiome is however dynamic, being influenced by ecology and evolutionary processes at the genetic level, therefore characterizing all the genes across all the microbes in an environment is required to describe the microbiome. Advances in high through-put DNA sequencing technology have enabled this insight in the form of random shotgun metagenomics.;My thesis provides insight into the microbiome composition through space and time and determine the ecological factors which are acting to structure the microbial community. With the novelty of microbiome research to date, macroecological community concepts have only been tested within the context of host associated microbiomes for disparate host organisms, such as mammals. For my dissertation work, I have investigated baseline microbiome diversity associated with the skin surface of three shark species. The primary aim was to test whether processes described through macroecological theory are apparent in the microbiome composition. For chapter 1, I asked a basic, yet fundament question of whether the microbiome composition exhibited neutral based community dynamics. With chapter 2, I examine the skin microbiome composition across a major evolutionary divergence, comparing microbiome composition among elasmobranchs (cartilaginous fishes), and teleost fishes (ray-finned fishes) to determine if processes of selectivity in the skin microbiome are concordant with host evolutionary trajectory. For chapter 3, I introduce a framework for examining host mitochondrial DNA which can be used to identify host evolutionary principles regulating the microbiome (Chapter 2), by characterizing the mitogenome of the common thresher shark (Alopias vulpinus). Overall, this work advances the understanding for microbiome community dynamics in context of existing ecological community framework for community assemblages. In addition, this work introduces skin microbiome dynamics in a unique corner of vertebrate evolutionary history and discusses host factors which may lead to varying microbiome patterns on an ancient vertebrate group.;Chapter 1: I first tested whether the skin microbiome of the common thresher shark (Alopias vulpinus) exhibited host specificity. The microbiome composition of the thresher shark was compared to an algal host species and the water column microbiome. I chose the algal host microbiome as a comparison to determine whether thresher shark microbiome adhered to the Lottery mechanism of community assemblage, which was first described in context of the microbiome from the algal host. The Lottery mechanisms of community assemblage posits that several species have similar functional roles (i.e. functional redundancy) and can occupy the same niche. Therefore, taxonomic composition can be random within a community while the functional composition is specific. I found that the shark microbiome was fundamentally different than the algal host and water column microbiome. Genera distinguishing the A. vulpinus microbiome from the water column included, Pseudoalteromonas (12.8 % +/- 4.7 of sequences), Erythrobacter (5. 3 % +/- 0.5) and Idiomarina (4.2 % +/- 1.2) and distinguishing gene pathways included, cobalt, zinc and cadmium resistance (2.2 % +/- 0.1); iron acquisition (1.2 % +/- 0.1) and ton/tol transport (1.3 % +/- 0.08). Taxonomic community overlap (100--dissimilarity index) was greater in the skin microbiome (77.6), relative to the water column microbiome (70.6) and the algal host-associated microbiome (algae: 71.5). I demonstrate that the unannotated sequences of the shark skin microbiome are more similar at a base-pair level (i.e. greater sequence turn-over) relative to both the algal and water column microbiomes. Overall, these results suggest the shark skin microbiome exhibits greater selectivity than the algal or water column microbiome.;Chapter 2: In Chapter 1, I demonstrated for the first time that shark skin is a selective surface, relative to an algal and water column microbiome and is influenced by different community structure principles. For chapter 2, I test the microbiome structure across a major evolutionary divergence within vertebrates, elasmobranchs and teleost fishes. The observation that host microbiomes are generally species specific has led naturally to the null hypothesis that the host microbiome evolves with the host and this called phylosymbiosis. The theory posits that host evolutionary trajectory influences microbiome composition, thus the microbiome of two closely related species is more similar than the microbiome of two distantly related species. (Abstract shortened by ProQuest.).
机译:真核生物被称为微生物组的微生物有机体覆盖。微生物组的新兴特性与其宿主的健康状况有关,并随着微生物组群落多样性的变化而波动。了解微生物组多样性的过程是了解宿主生物健康的关键问题。从历史上看,微生物组洞察力是通过有限的程序获得的,该程序不能提供完整的评估。例如,基于培养物的微生物测定法可洞悉不到1%的可培养微生物,而基因标记调查仅显示微生物组的分类学组成。然而,微生物组是动态的,在遗传水平上受到生态和进化过程的影响,因此描述环境中需要表征环境中所有微生物的所有基因。高通量DNA测序技术的进步以随机散弹枪宏基因组学的形式实现了这一洞察力。我的论文通过时空了解微生物组的组成,并确定了构成微生物群落的生态因素。迄今为止,随着微生物组研究的新颖性,仅在与宿主相关的微生物组的背景下,针对不同的宿主生物(例如哺乳动物)对宏观生态学社区的概念进行了测试。在我的论文工作中,我研究了与三种鲨鱼的皮肤表面相关的基线微生物组多样性。主要目的是测试通过宏观生态学理论描述的过程在微生物组组成中是否显而易见。在第一章中,我问了一个基本但基本的问题,即微生物组组成是否表现出中性的社区动态。在第二章中,我研究了主要进化差异中的皮肤微生物组组成,比较了弹性分支(软骨鱼)和硬骨鱼(鱼鳍鱼)中的微生物组组成,以确定皮肤微生物组中的选择性过程是否与宿主进化相一致。弹道。在第3章中,我介绍了一个检查宿主线粒体DNA的框架,该框架可用于通过表征普通脱粒鲨(Alopias vulpinus)的有丝分裂基因组来鉴定调节微生物组的宿主进化原理(第2章)。总体而言,这项工作在现有的社区群落生态群落框架的背景下,促进了对微生物群落动态的理解。此外,这项工作还介绍了脊椎动物进化史上一个独特角落的皮肤微生物组动力学,并讨论了可能导致古代脊椎动物群体微生物组模式发生变化的宿主因素。;第1章:我首先测试了普通脱粒鲨的皮肤微生物组(Alopias vulpinus)表现出宿主特异性。将脱粒机鲨的微生物组组成与藻类宿主物种和水柱微生物组进行了比较。我选择藻类宿主微生物组作为比较,以确定脱粒机鲨鱼微生物组是否遵守社区聚集的彩票机制,这是在藻类宿主微生物组的背景下首次描述的。社区集合的彩票机制认为,几个物种具有相似的功能角色(即功能冗余),并且可以占据相同的生态位。因此,分类学组成在社区内可能是随机的,而功能组成是特定的。我发现鲨鱼微生物组与藻类宿主和水柱微生物组根本不同。从水柱中区分外阴曲霉微生物组的属包括假单胞菌属(序列的12.8%+/- 4.7),红杆菌(5.3%+/- 0.5)和异狄氏杆菌(4.2%+/- 1.2)并区分基因途径包括耐钴,锌和镉(2.2%+/- 0.1);铁的获取(1.2%+/- 0.1)和吨/吨运输(1.3%+/- 0.08)。相对于水柱微生物组(70.6)和藻类宿主相关微生物组(藻类:71.5),皮肤微生物组(77.6)的生物分类群落重叠(100-相异指数)更大。我证明了相对于藻类和水柱微生物组,鲨鱼皮肤微生物组的未注释序列在碱基对水平(即更大的序列转换)更相似。总体而言,这些结果表明鲨鱼皮微生物组比藻类或水柱微生物组具有更高的选择性。第二章:在第一章中,我首次证明了鲨鱼皮是相对于藻类和水柱微生物组而言的选择性表面。并且受到不同社区结构原则的影响。对于第二章,我测试了脊椎动物内主要进化差异的微生物组结构。,弹性s和硬骨鱼类。宿主微生物群通常是物种特异性的这一观察结果自然导致了无效假设,即宿主微生物群随宿主进化,这被称为系统共生。该理论认为宿主进化轨迹会影响微生物组的组成,因此两个密切相关物种的微生物组比两个远缘相关物种的微生物组更为相似。 (摘要由ProQuest缩短。)。

著录项

  • 作者

    Doane, Michael P.;

  • 作者单位

    University of California, Davis.;

  • 授予单位 University of California, Davis.;
  • 学科 Ecology.;Biology.;Zoology.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 112 p.
  • 总页数 112
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号