首页> 外文学位 >Second Harmonic Generation Spectroscopy Studies of Polymers and Nanomaterials at Model Biological Surfaces
【24h】

Second Harmonic Generation Spectroscopy Studies of Polymers and Nanomaterials at Model Biological Surfaces

机译:模型生物表面上的聚合物和纳米材料的二次谐波产生光谱研究

获取原文
获取原文并翻译 | 示例

摘要

The projected increase in the use of nanomaterials raises concerns about adverse impacts new technologies utilizing these materials may have on the environment. These concerns can be addressed from a chemical perspective by studying how emerging nanomaterials interact with biological systems. Fundamentally, the key interactions for nanomaterial uptake into a cell occurs at the nano/bio interface. This interface is difficult to access experimentally, mainly because traditional methods used to probe these interactions do not provide molecular information, are not interface-specific, or are not sensitive enough to detect small surface coverages, even at saturation. As a result, the amount of molecular information regarding how nanoparticles interact with aqueous/solid interfaces, including biological membranes, is limited. There exists therefore an urgent need to bridge this knowledge gap by probing the nano/bio interface with new tools. The motivation of this thesis is to address this need by using advanced spectroscopic techniques that will improve our ability to understand, control, and predict how emerging nanomaterials will impact the environment and biological systems. Herein we take a bottom-up approach to better understand, from a fundamental perspective, what factors contribute to nano/bio interactions.;The interactions that take place at the nano/bio interface are directly influenced by the chemistry of the biological surface, the properties of the nanomaterial (size, shape, functionalization, surface charge, charge density, etc.), and environmental conditions (ionic strength, pH, temperature, etc.). Given the complexity of both nanomaterials and biological surfaces, we simplify our systems to include biomimetic membranes, model nanomaterials, and polyelectrolytes which are often used to functionalize nanomaterials. We use a combinatorial approach that employs second harmonic generation (SHG) spectroscopy, sum frequency generation spectroscopy (SFG), and quartz crystal microbalance with dissipation monitoring (QCM-D) measurements to explore the influence of surface charge, charge density, chemical functionality, ionic strength, and electrostatics, on nano/bio interactions. Specifically, SHG spectroscopy is used here to estimate equilibrium constants, changes in interfacial potential, and surface charge densities of model biological membranes interacting with nanomaterials and polyelectrolytes. With insights from complementary tools, we discuss the impacts that nanomaterials have on the structure of biomimetic surfaces and provide estimates for the adsorbed mass, number densities, and percent ionizations. In addition to building a better understanding of nano/bio interactions, we aim to use this information to develop better design rules for nano-scale materials, to minimize or attenuate some outcomes, and to exploit more favorable outcomes. The results generated from these studies are reported in collaboration with the Center for Sustainable Nanotechnology.
机译:纳米材料使用的预计增加引起了人们对使用这些材料的新技术可能对环境造成不利影响的担忧。通过研究新兴的纳米材料如何与生物系统相互作用,可以从化学角度解决这些问题。从根本上讲,纳米材料吸收进入细胞的关键相互作用发生在纳米/生物界面。这个界面很难通过实验来访问,主要是因为用于探测这些相互作用的传统方法无法提供分子信息,不是特定于界面的,或者即使在饱和时也不够灵敏以检测较小的表面覆盖率。结果,关于纳米颗粒如何与包括生物膜的水/固体界面相互作用的分子信息量受到限制。因此,迫切需要通过使用新工具探测纳米/生物界面来弥合这一知识鸿沟。本文的动机是通过使用先进的光谱技术来满足这一需求,该技术将提高我们理解,控制和预测新兴纳米材料将如何影响环境和生物系统的能力。在这里,我们采用一种自下而上的方法,以便从根本的角度更好地理解哪些因素导致了纳米/生物相互作用。;在纳米/生物界面发生的相互作用直接受到生物表面化学性质的影响。纳米材料的特性(尺寸,形状,功能化,表面电荷,电荷密度等)和环境条件(离子强度,pH,温度等)。考虑到纳米材料和生物表面的复杂性,我们简化了系统,以包括仿生膜,模型纳米材料和常用于功能化纳米材料的聚电解质。我们采用组合方法,该方法采用二次谐波产生(SHG)光谱,总和频率产生光谱(SFG)和石英晶体微天平以及耗散监测(QCM-D)测量来探索表面电荷,电荷密度,化学功能,离子强度和静电,取决于纳米/生物相互作用。具体而言,此处使用SHG光谱来估计与纳米材料和聚电解质相互作用的模型生物膜的平衡常数,界面电势的变化和表面电荷密度。借助补充工具的见解,我们讨论了纳米材料对仿生表面结构的影响,并提供了吸附质量,数量密度和电离百分比的估计值。除了建立对纳米/生物相互作用的更好理解之外,我们的目标是利用这些信息为纳米级材料开发更好的设计规则,以最小化或减弱某些结果,并利用更有利的结果。这些研究产生的结果与可持续纳米技术中心合作进行了报道。

著录项

  • 作者

    McGeachy, Alicia Christine.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Chemistry.;Polymer chemistry.;Nanoscience.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 177 p.
  • 总页数 177
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号