首页> 外文学位 >Investigation of Materials for Lithium Ion Batteries and Beyond: Visualization of Structural Transformation and Impact of Interfacial Structure
【24h】

Investigation of Materials for Lithium Ion Batteries and Beyond: Visualization of Structural Transformation and Impact of Interfacial Structure

机译:锂离子电池材料及其他材料的研究:结构转变的可视化和界面结构的影响

获取原文
获取原文并翻译 | 示例

摘要

The increasing demand on renewable energy worldwide is driving the pursuit of cleaner, safer and higher-energy energy storage technologies, as the concerns about environmental pollution associated with the use of fossil fuels are becoming serious with the growth of population and economy. While solar and wind energies are intermittent, rechargeable batteries are so far the most viable option for electrical energy storage. Among the various battery systems such as lead-acid, nickel cadmium, nickel metal hydride, lithium based batteries have unmatchable combination of high energy and power density, which make them the desirable choice for electric vehicles, portable electronics and power tools. As the functionalities of the portable electronics become more sophisticated and the demand for electric vehicles and storage of electricity from renewable sources increases, other advanced battery technologies such as lithium sulfur batteries and magnesium ion batteries in addition to lithium ion batteries are being developed, where cost, energy, power, life and safety are all important parameters to be taken into accounted. In this doctorate dissertation work, electroactive materials for use in lithium ion batteries, lithium sulfur batteries, lithium primary batteries and magnesium ion batteries were investigated, and in-depth understanding of the electrochemical properties of these materials was gained.;Vanadium-based compounds are favorable materials for Li ion batteries due to the possibility of multiple electron transfers per formula unit within a desirable voltage range and thus a high energy density. Among the multiple oxide materials with vanadium redox centers, Li1+nV3O8 (n=0-0.2) is especially promising because of its superior electrochemical properties including high specific energy and good rate capability. Prior research efforts have centered on the modification of preparation approaches to improve the functional capacity of this material, as preparation conditions including annealing temperature have a strong impact on the electrochemical outcomes. Understanding phase transformation and structural change accompanying de(lithiation) is of great significance for achieving excellent cyclic stability of the electrode materials. From the view point of battery applications, the focus of this dissertation work on the Li1+nV3O8 material is on probing the phase evolution, phase distribution as well as impact of morphology and interfacial structure, which are vital for the practical implementation of this material. (Abstract shortened by ProQuest.).
机译:随着人口和经济的增长,与使用化石燃料相关的环境污染问题日益严重,全球对可再生能源的需求不断增长,推动了对更清洁,更安全和更高能量的储能技术的追求。尽管太阳能和风能是间歇性的,但到目前为止,可充电电池是电能存储的最可行选择。在诸如铅酸,镍镉,镍金属氢化物之类的各种电池系统中,锂基电池具有无与伦比的高能量和功率密度组合,这使其成为电动汽车,便携式电子产品和电动工具的理想选择。随着便携式电子设备的功能变得越来越复杂,以及对电动汽车和来自可再生能源的电力存储的需求增加,除锂离子电池之外,还开发了其他先进的电池技术,例如锂硫电池和镁离子电池, ,能量,功率,寿命和安全性都是要考虑的重要参数。在此博士学位论文中,研究了用于锂离子电池,锂硫电池,锂一次电池和镁离子电池的电活性材料,并对这些材料的电化学性能有了深入的了解。锂离子电池的理想材料,因为在理想的电压范围内每个公式单位可能发生多次电子转移,因此能量密度很高。在具有钒氧化还原中心的多种氧化物材料中,Li1 + nV3O8(n = 0-0.2)特别有前途,因为其优异的电化学性能包括高比能和良好的倍率性能。先前的研究工作集中在改进制备方法以改善这种材料的功能能力上,因为包括退火温度在内的制备条件对电化学结果有很大影响。理解伴随去锂化的相变和结构变化对于实现电极材料的优异循环稳定性具有重要意义。从电池应用的角度来看,本论文对Li1 + nV3O8材料的研究重点是探索相演化,相分布以及形态和界面结构的影响,这对于实际应用该材料至关重要。 (摘要由ProQuest缩短。)。

著录项

  • 作者

    Zhang, Qing.;

  • 作者单位

    State University of New York at Stony Brook.;

  • 授予单位 State University of New York at Stony Brook.;
  • 学科 Materials science.;Alternative Energy.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 101 p.
  • 总页数 101
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号