首页> 外文学位 >Development and Optimization of Electrochemical Sensors to Detect Bacterial Pathogens for Point-of-Care Applications
【24h】

Development and Optimization of Electrochemical Sensors to Detect Bacterial Pathogens for Point-of-Care Applications

机译:用于现场护理应用的细菌病原体电化学传感器的开发和优化

获取原文
获取原文并翻译 | 示例

摘要

This dissertation focuses on the development and optimization of electrochemical sensors to detect bacterial pathogens for point-of-care applications. Recent spikes in hospital-acquired infections have resurfaced fears of antibiotic-resistant bacteria and their adverse effects on human health. Presenting new challenges in pathogenesis and resistance, infections caused by these microorganisms are becoming increasingly difficult to treat, with prompt administration of targeted therapies providing the best chances for patient recovery. To address this emerging threat, this dissertation aims to develop and improve biosensors that will allow for early and rapid detection of these bacterial pathogens.;Pseudomonas aeruginosa is a commonly isolated nosocomial pathogen frequently associated with infections in patients with cystic fibrosis and chronic wounds. P. aeruginosa secretes pyocyanin, a unique quorum sensing molecule that can be monitored electrochemically due to its redox-active nature. Detection of pyocyanin has been demonstrated to be a relatively simple, inexpensive way to screen for P. aeruginosa infections, but there remain significant challenges in the development of this sensing strategy before it can be used as a viable diagnostic technique.;Several enhancements were investigated for sensor improvement. One focus of this work was to use amino acids to up-regulate pyocyanin production to expedite identification methods at the onset of infection. The second focus of this work was to electrochemically screen additional pathogens for unique redox-active molecules. As no other redox-active molecules could be directly measured or identified, a secondary electrochemical detection method was developed using aptamers as highly selective recognition elements. The third focus of this work was to microfabricate an electrochemical sensor to detect pH, a general marker of infection, and pyocyanin to detect the presence of P. aeruginosa for applications toward a smart bandage. Finally, the P. aeruginosa sensor was clinically validated with human and animal patient samples.;Future work and recommendations include continued clinical data collection and further optimization of the aptamer biosensor to detect other clinical pathogens. These sensors will lead to faster detection methods for P. aeruginosa and other clinically-relevant bacteria, allowing clinicians to promptly switch from broad-spectrum antibiotics to targeted therapies, lowering hospital expenditures, minimizing drug resistance, and improving patient care outcomes.
机译:本文主要研究和优化用于现场护理应用的检测细菌病原体的电化学传感器。最近医院获得性感染的激增使人们更加担心抗生素耐药性细菌及其对人体健康的不利影响。在致病性和耐药性方面提出了新的挑战,由这些微生物引起的感染正变得越来越难以治疗,及时给予靶向治疗为患者康复提供了最佳机会。为了应对这一新兴威胁,本论文旨在开发和改进生物传感器,以实现对这些细菌病原体的早期和快速检测。铜绿假单胞菌分泌绿脓素,一种独特的群体感应分子,由于其具有氧化还原活性,因此可以通过电化学方法进行监测。事实证明,检测绿脓素是一种相对简单,廉价的筛查铜绿假单胞菌感染的方法,但是在将该传感策略用作可行的诊断技术之前,其发展仍存在重大挑战。用于传感器改进。这项工作的重点是使用氨基酸来上调绿脓素的产生,以加快感染开始时的鉴定方法。这项工作的第二个重点是电化学筛选其他病原体,以寻找独特的氧化还原活性分子。由于无法直接测量或鉴定其他氧化还原活性分子,因此开发了使用适体作为高度选择性识别元件的二次电化学检测方法。这项工作的第三个重点是微制造电化学传感器以检测pH(感染的一般标志物),并制造黄绿素以检测铜绿假单胞菌的存在,以用于智能绷带。最后,铜绿假单胞菌传感器已通过人和动物患者样品的临床验证。未来的工作和建议包括持续的临床数据收集和进一步优化适体生物传感器以检测其他临床病原体。这些传感器将导致更快的铜绿假单胞菌和其他临床相关细菌的检测方法,使临床医生能够迅速从广谱抗生素转向靶向治疗,从而降低医院支出,最大程度降低耐药性并改善患者护理效果。

著录项

  • 作者

    Sismaet, Hunter James.;

  • 作者单位

    Northeastern University.;

  • 授予单位 Northeastern University.;
  • 学科 Chemical engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 190 p.
  • 总页数 190
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号