首页> 外文学位 >Manipulation of microsize to nanosize particles with AC electrokinetic forces.
【24h】

Manipulation of microsize to nanosize particles with AC electrokinetic forces.

机译:利用交流电动势操纵微米级至纳米级的颗粒。

获取原文
获取原文并翻译 | 示例

摘要

The ability to manipulate biological objects from micrometer to nanometer scale in microfluidic devices plays an important role in many biological and colloidal science applications. Selective seperation, trapping and focusing of micro/nanoscale particles are some of the key tasks for preparation and detection on a lab-on-a-chip device. Using electric forces, fluid motion can be induced with electroosmosis, while charged particles can be transported by electrophoresis, and polarisable particles may be manipulated with dielectrophoresis.;We study here the manipulation of micro to nanosize particles in an interdigitated electrode array channel. Inhomogeneities in the electric-field allow the utilization of dielectrophoresis DEP. In our setup a rotating fluid flow due to AC electroosmosis (ACEO) is also present.;We first present a method to increase the efficiency of particle separation using DEP by applying a more general electric field shape than single-frequency. We later focus on the complex problem when DEP, ACEO and Brownian motion are all significant. We introduce a model for particle motion using a closed form solution of the DEP force and an analytical expression for the fluid flow. Fixed points and stability analysis is performed which predicts the location of the trapping region depending on the particle's size. For nanoparticles however Brownian motion must be taken into account, which was done with an advection diffusion equation. The Peclet number for the particle studied can be high. At high Peclet number, finite element methods don't perform well. We present a novel method to solve the advection diffusion equation. Particle motion is described by a stochastic process. The solution is written as an expected value which is evaluated using averaging in space. This numerical method permits the study of diffusive particles density distribution moved by a rotating fluid flow perturbed by a non divergence-free velocity. This analysis gives an understanding of the dynamical equilibrium focusing of nanoparticles with ACEO perturbed by DEP force.;This work is aiming to enable precise control development by providing efficient analysis tools which reduces the time between system analysis and control design.
机译:在微流控设备中操纵从微米到纳米尺度的生物物体的能力在许多生物和胶体科学应用中起着重要作用。微米级/纳米级颗粒的选择性分离,捕获和聚焦是在芯片实验室设备上进行制备和检测的一些关键任务。利用电势,电渗可以诱导流体运动,而带电粒子可以通过电泳传输,而可极化粒子可以通过介电电泳进行操作。;我们在这里研究了在指状电极阵列通道中对微米级至纳米级粒子的操作。电场中的不均匀性允许利用介电电泳DEP。在我们的设置中,还存在由于交流电渗(ACEO)引起的旋转流体流。我们首先提出一种方法,该方法通过应用比单频更通用的电场形状来提高使用DEP分离颗粒的效率。当DEP,ACEO和Brownian运动都非常重要时,我们稍后将重点讨论复杂的问题。我们介绍了使用DEP力的闭合形式解和流体流动的解析表达式的粒子运动模型。进行定点分析和稳定性分析,根据颗粒的大小预测捕获区域的位置。但是,对于纳米颗粒,必须考虑布朗运动,这是通过对流扩散方程完成的。研究的粒子的Peclet数可能很高。在高Peclet数下,有限元方法的效果不佳。我们提出了一种新的方法来求解对流扩散方程。粒子运动是通过随机过程描述的。该解决方案被写为期望值,该期望值使用空间平均值进行评估。该数值方法允许研究由无散度速度扰动的旋转流体流所移动的扩散颗粒密度分布。该分析提供了对具有DEP力扰动的ACEO的纳米粒子的动态平衡聚焦的理解。

著录项

  • 作者

    Loire, Sophie.;

  • 作者单位

    University of California, Santa Barbara.;

  • 授予单位 University of California, Santa Barbara.;
  • 学科 Mathematics.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 164 p.
  • 总页数 164
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 数学;机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号