首页> 外文学位 >Reversible Electrochemical Intercalation of Aluminum in Transition Metal Sulfides
【24h】

Reversible Electrochemical Intercalation of Aluminum in Transition Metal Sulfides

机译:过渡金属硫化物中铝的可逆电化学嵌入

获取原文
获取原文并翻译 | 示例

摘要

Rechargeable battery technology has been one of the most exciting advancements in science and technology in the last several decades. Even though lithium ion battery technology has achieved great success in many fields, its wide deployment for large-scale energy storage is very questionable because of the limited resources of lithium. Therefore, alternative rechargeable battery technologies based on abundant elements need to be developed for sustainable electrochemical energy storage. Among all the potential candidates, battery systems based on aluminum as anode is particularly promising.;In this thesis, we are dedicated to develop novel rechargeable Al-ion battery prototypes mainly focusing on cathode materials. Our achievement of discovering transition metal sulfides as promising cathode materials for rechargeable Al-ion batteries is pioneering. We first proposed Chevrel Phase Mo6S 8 as intercalation-type cathode material for rechargeable Al-ion battery using ionic liquid electrolyte. We investigated the electrochemical properties as well as compositional properties of Chevrel Phase Mo6S 8 as a cathode material. We believe it is the first reported intercalation-type rechargeable Al-ion battery prototype. We went further to probe the detailed intercalation process of Al3+ in Chevrel phase Mo6S 8. High quality powder XRD data along with Rietveld refinements give a clear picture of the aluminum intercalation induced phase transition process of Mo6S8. High resolution TEM further provided strong evidence of Al3+ intercalation and phase transition of Mo 6S8. In light of the information gained from the Al 3+ intercalation and deintercalation process, constant-current-constant-voltage charge and galvanostatic discharge technique was used to improve the cycling performance of Mo6S8. A 50% capacity increase was obtained with a high current density of 40 mA g-1. At last, we extended our cathode materials screening on other transition metal sulfides base on the previous results. We presented layered TiS2 and cubic Cu 0.31Ti2S4 to be potential cathode materials for rechargeable Al-ion batteries. Layered TiS2 showed better electrochemical performance than Cubic Cu0.31Ti2S 4. Moreover, we also demonstrated that the slow diffusion of Al 3+ in the titanium sulfides crystal structure is the main obstacle to achieving high Al intercalation capacity through GITT analysis.
机译:在过去的几十年中,可充电电池技术一直是科学技术领域最令人激动的进步之一。尽管锂离子电池技术在许多领域都取得了巨大的成功,但是由于锂的资源有限,锂离子电池技术在大规模储能方面的广泛部署仍然令人质疑。因此,需要开发基于丰富元素的替代可再充电电池技术以实现可持续的电化学能量存储。在所有可能的候选材料中,以铝为阳极的电池系统特别有前途。在本论文中,我们致力于开发新颖的可再充电Al离子电池原型,主要致力于正极材料。我们发现过渡金属硫化物作为可再充电的铝离子电池的有希望的阴极材料的成就是开创性的。我们首先提出了Chevrel相Mo6S 8作为插层型正极材料,用于使用离子液体电解质的可充电Al离子电池。我们研究了作为阴极材料的Chevrel相Mo6S 8的电化学性质和组成性质。我们相信这是第一个报告的插层式可再充电铝离子电池原型。我们进一步研究了Chevrel相Mo6S 8中Al3 +的详细嵌入过程。高质量的粉末XRD数据和Rietveld精炼方法清楚地显示了Mo6S8的铝嵌入诱导的相变过程。高分辨率TEM进一步提供了Mo6S8的Al3 +嵌入和相变的有力证据。根据从Al 3+嵌入和脱嵌过程获得的信息,使用恒流-恒压充电和恒电流放电技术来改善Mo6S8的循环性能。在40 mA g-1的高电流密度下,容量增加了50%。最后,基于先前的结果,我们将阴极材料的筛选扩展到其他过渡金属硫化物上。我们提出了分层的TiS2和立方Cu 0.31Ti2S4作为可充电Al离子电池的潜在阴极材料。层状TiS2的电化学性能优于立方晶Cu0.31Ti2S4。此外,通过GITT分析,我们还证明了Al 3+在硫化钛晶体结构中的缓慢扩散是实现高Al嵌入能力的主要障碍。

著录项

  • 作者

    Geng, Linxiao.;

  • 作者单位

    University of California, Riverside.;

  • 授予单位 University of California, Riverside.;
  • 学科 Chemical engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 134 p.
  • 总页数 134
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号