首页> 外文学位 >Ionic mechanisms of action potential rate dependence, conduction and block in normal epicardium and in remodeled epicardium post-infarction.
【24h】

Ionic mechanisms of action potential rate dependence, conduction and block in normal epicardium and in remodeled epicardium post-infarction.

机译:正常心外膜和梗死后重塑心外膜的动作电位速率依赖性,传导和阻滞的离子机制。

获取原文
获取原文并翻译 | 示例

摘要

In this work, detailed computational models are used to study the electrophysiology of normal epicardium and the arrhythmogenic effects of epicardial cell remodeling post-infarction. The canine epicardial myocyte model described here reproduces a wide range of experimentally observed rate dependent phenomena in cell and tissue. Model behavior depends on updated formulations for the 4-AP sensitive transient outward current (Ito1), the slow component of the delayed rectifier potassium current (IKs), the L-type Ca2+ channel (ICa,L) and the sodium-potassium pump (INaK) fit to data from canine ventricular myocytes. The model shows that Ito1 plays a limited role in potentiating peak ICa,L and Ca2+ release for propagated action potentials (APs), but modulates the time course of action potential duration (APD) restitution. IKs plays an important role in APD shortening at short diastolic intervals but a limited role in AP repolarization at longer cycle lengths. In addition, simulations demonstrate that ICa,L, INaK and [Na+]i play critical roles in APD accommodation and the rate dependence of APD restitution. Starting from the ionic model of a normal epicardial cell described above, an epicardial border zone (EBZ) model was developed based on available remodeling data. Ionic models of normal zone (NZ) and EBZ myocytes were incorporated into one-dimensional models of propagation to gain mechanistic insight into how ion channel remodeling affects APD and refractoriness, vulnerability to conduction block and conduction safety post-infarction. Simulations of EBZ APD restitution show that remodeled INa and ICaL promote increased effective refractory period (ERP) and prolonged APD at short diastolic interval (DI). Heterogeneous tissue simulations show that increased post-repolarization refractoriness and altered restitution lead to a large rate dependent vulnerable window for conduction block. In simulations of conduction post-infarction, EBZ IK1 remodeling partially offsets the reduction in conduction safety due to altered INa, while Ito1 and ICaL have a negligible effect on conduction. Further simulations show that injection of skeletal muscle sodium channel SkM1-INa, a recently proposed anti-arrhythmic therapy, has several desirable effects including normalization of EBZ ERP and APD restitution, elimination of vulnerability to conduction block and normalization of conduction in uncoupled tissue.
机译:在这项工作中,使用详细的计算模型来研究正常心外膜的电生理和梗死后心外膜细胞重塑的心律失常作用。本文所述的犬心外膜心肌细胞模型在细胞和组织中复制了多种实验观察到的速率依赖性现象。模型行为取决于对4-AP敏感的瞬态外向电流(Ito1),延迟整流器钾电流(IKs)的慢分量,L型Ca2 +通道(ICa,L)和钠钾泵( INaK)适合犬心室肌细胞的数据。该模型显示Ito1在增强传播的动作电位(AP)的峰值ICa,L和Ca2 +释放中发挥有限的作用,但调节动作电位持续时间(APD)恢复的时间过程。 IK在舒张间隔短时APD缩短中起重要作用,而在更长的周期长度中AP复极化中作用有限。此外,模拟表明,ICa,L,INaK和[Na +] i在APD调节和APD归还的速率依赖性中起关键作用。从上述正常心外膜细胞的离子模型开始,基于可用的重塑数据开发了心外膜边界区(EBZ)模型。将正常区域(NZ)和EBZ心肌细胞的离子模型纳入一维传播模型中,从而获得有关离子通道重塑如何影响APD和难治性,对传导阻滞的脆弱性以及梗塞后传导安全性的机制的机械见解。 EBZ APD恢复的模拟结果表明,重构的INa和ICaL可以在舒张间隔短(DI)时增加有效不应期(ERP)和延长APD。异质组织模拟显示,复极后的耐火度增加和恢复性改变会导致较大的速率依赖性脆弱传导窗口。在梗塞后传导的模拟中,EBZ IK1重塑部分抵消了因INa改变而导致的传导安全性降低,而Ito1和ICaL对传导的影响可忽略不计。进一步的模拟显示,骨骼肌钠通道SkM1-INa的注射是一种最近提出的抗心律不齐疗法,具有几种理想的作用,包括EBZ ERP和APD恢复的正常化,消除对传导阻滞的脆弱性以及非耦合组织中传导的正常化。

著录项

  • 作者

    Decker, Keith Forest.;

  • 作者单位

    Washington University in St. Louis.;

  • 授予单位 Washington University in St. Louis.;
  • 学科 Engineering Biomedical.;Biology Physiology.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 129 p.
  • 总页数 129
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:36:53

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号